Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Med (N Y) ; 2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1783640

ABSTRACT

Background: COVID-19 manifests with respiratory, systemic, and gastrointestinal (GI) symptoms.1,2 SARS-CoV-2 RNA is detected in respiratory and fecal samples, and recent reports demonstrate viral replication in both the lung and intestinal tissue.3-5 Although much is known about early fecal RNA shedding, little is known about the long term shedding, especially in those with mild COVID-19. Furthermore, most reports of fecal RNA shedding do not correlate these findings with GI symptoms.6. Methods: We analyze the dynamics of fecal RNA shedding up to 10 months after COVID-19 diagnosis in 113 individuals with mild to moderate disease. We also correlate shedding with disease symptoms. Findings: Fecal SARS-CoV-2 RNA is detected in 49.2% [95% Confidence interval = 38.2%-60.3%] of participants within the first week after diagnosis. Whereas there was no ongoing oropharyngeal SARS-CoV-2 RNA shedding in subjects at and after 4 months, 12.7% [8.5%-18.4%] of participants continued to shed SARS-CoV-2 RNA in the feces at 4 months after diagnosis and 3.8% [2.0%-7.3%] shed at 7 months. Finally, we find that GI symptoms (abdominal pain, nausea, vomiting) are associated with fecal shedding of SARS-CoV-2 RNA. Conclusions: The extended presence of viral RNA in feces, but not respiratory samples, along with the association of fecal viral RNA shedding with GI symptoms suggest that SARS-CoV-2 infects the GI tract, and that this infection can be prolonged in a subset of individuals with COVID-19.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-291438

ABSTRACT

COVID-19 patients shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. In our benchmarking study, we recommend a standardized protocol for the preservation, extraction and detection of viral RNA from stool. This protocol includes a preservative, viral RNA extraction steps, and PCR-based quantification methods to maximize yield and detection of SARS-CoV-2 RNA. Our protocol takes advantage of commercially available reagents and equipment to maximize ease of access and consistency across studies. Additionally, we apply an attenuated bovine coronavirus vaccine as a spike-in control, and synthetic RNA standards to improve standardization and reliability of the assay. While we recommend both ddPCR and RT-qPCR-based assays, we acknowledge that ddPCR may be prohibitively expensive due to the necessity of specialized equipment and reagents. This protocol was developed with a focus on SARS-CoV-2 RNA, but may apply to other coronaviruses as well. We estimate that this protocol takes between 6 to 8 hours total to quantify the viral RNA load in a fecal sample.

5.
Nat Commun ; 12(1): 5753, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447302

ABSTRACT

Patients with COVID-19 shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. This may be significant for patient health, epidemiology, and diagnosis. However, methods to preserve stool, and to extract and quantify viral RNA are not standardized. We test the performance of three preservative approaches at yielding detectable SARS-CoV-2 RNA: the OMNIgene-GUT kit, Zymo DNA/RNA shield kit, and the most commonly applied, storage without preservative. We test these in combination with three extraction kits: QIAamp Viral RNA Mini Kit, Zymo Quick-RNA Viral Kit, and MagMAX Viral/Pathogen Kit. We also test the utility of ddPCR and RT-qPCR for the reliable quantification of SARS-CoV-2 RNA from stool. We identify that the Zymo DNA/RNA preservative and the QiaAMP extraction kit yield more detectable RNA than the others, using both ddPCR and RT-qPCR. Taken together, we recommend a comprehensive methodology for preservation, extraction and detection of RNA from SARS-CoV-2 and other coronaviruses in stool.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , Feces/virology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Humans , Phosphoproteins/genetics , Preservation, Biological/standards , RNA, Viral/analysis , RNA, Viral/genetics , Reagent Kits, Diagnostic , Reference Standards , SARS-CoV-2/genetics , Specimen Handling/standards , Viral Load/standards
7.
Am Heart J ; 242: 138-145, 2021 12.
Article in English | MEDLINE | ID: covidwho-1356106

ABSTRACT

BACKGROUND: Improved longevity for adults with congenital heart disease (ACHD) necessitates regular, longitudinal care for this population. Telemedicine has emerged as a strategy to increase access to subspecialty care. We evaluated patient experience with a virtual visit program in the pre-COVID era to identify patient-centered benefits and limitations. METHODS: We enrolled patients for 30-minute synchronous videoconferencing virtual visits at our institution between October 2013 and March 2019. All patients were Massachusetts residents. Patients were surveyed and their characteristics were abstracted from electronic medical records. RESULTS: A total of 264 virtual visits were conducted among 174 patients with a median age of 40 years. Patients traveled a median of 70 miles for in-person visits. Many visits were to review patient data (47%), and most individuals had moderate complexity CHD (45%). Patients reported very high satisfaction with a median visit rating of 10. Patients mostly preferred virtual visits when considering convenience and cost. No difference in preference to in-person visits was reported when considering sharing private information, confidence that concerns would be addressed, and overall visit quality. In-person visits were still preferred for personal connections and showing a physical problem. CONCLUSION: We find that patients are highly satisfied with virtual visits. ACHD programs should consider blended virtual and in-person care. Long-term regulatory provisions will further improve care through the expansion of telemedicine in the post-COVID era.


Subject(s)
Heart Defects, Congenital , Patient Satisfaction , Telemedicine , Videoconferencing , Adult , COVID-19/epidemiology , Heart Defects, Congenital/therapy , Humans , Patient Satisfaction/statistics & numerical data
9.
10.
Nat Commun ; 12(1): 1967, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1159789

ABSTRACT

Type III interferons have been touted as promising therapeutics in outpatients with coronavirus disease 2019 (COVID-19). We conducted a randomized, single-blind, placebo-controlled trial (NCT04331899) in 120 outpatients with mild to moderate COVID-19 to determine whether a single, 180 mcg subcutaneous dose of Peginterferon Lambda-1a (Lambda) within 72 hours of diagnosis could shorten the duration of viral shedding (primary endpoint) or symptoms (secondary endpoint). In both the 60 patients receiving Lambda and 60 receiving placebo, the median time to cessation of viral shedding was 7 days (hazard ratio [HR] = 0.81; 95% confidence interval [CI] 0.56 to 1.19). Symptoms resolved in 8 and 9 days in Lambda and placebo, respectively, and symptom duration did not differ significantly between groups (HR 0.94; 95% CI 0.64 to 1.39). Both Lambda and placebo were well-tolerated, though liver transaminase elevations were more common in the Lambda vs. placebo arm (15/60 vs 5/60; p = 0.027). In this study, a single dose of subcutaneous Peginterferon Lambda-1a neither shortened the duration of SARS-CoV-2 viral shedding nor improved symptoms in outpatients with uncomplicated COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Interleukins/administration & dosage , Polyethylene Glycols/administration & dosage , Adult , Aged , COVID-19/virology , Female , Humans , Injections, Subcutaneous , Male , Middle Aged , Outpatients , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Single-Blind Method , Treatment Failure , Virus Shedding/drug effects , Young Adult
11.
Cold Spring Harb Mol Case Stud ; 7(2)2021 04.
Article in English | MEDLINE | ID: covidwho-1087882

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by infection with SARS-CoV-2, presents with a broad constellation of both respiratory and nonrespiratory symptoms, although it is primarily considered a respiratory disease. Gastrointestinal symptoms-including nausea, abdominal pain, vomiting, and diarrhea-rank chief among these. When coupled with the presence of viral RNA in fecal samples, the presence of gastrointestinal symptoms raises relevant questions regarding whether SARS-CoV-2 can productively infect the upper or lower gastrointestinal tract. Despite the well-documented prevalence of gastrointestinal symptoms and the high rate of SARS-CoV-2 fecal RNA shedding, the biological, clinical, and epidemiological relevance of these findings is unclear. Furthermore, the isolation of replication-competent virus from fecal samples has not been reproducibly and rigorously demonstrated. Although SARS-CoV-2 shedding likely occurs in a high proportion of patients, gastrointestinal symptoms affect only a subset of individuals. Herein, we summarize what is known about gastrointestinal symptoms and fecal viral shedding in COVID-19, explore the role of the gut microbiome in other respiratory diseases, speculate on the role of the gut microbiota in COVID-19, and discuss potential future directions. Taking these concepts together, we propose that studying gut microbiota perturbations in COVID-19 will enhance our understanding of the symptomology and pathophysiology of this novel devastating disease.


Subject(s)
Abdominal Pain/etiology , COVID-19/complications , Diarrhea/etiology , Gastrointestinal Microbiome , Nausea/etiology , Vomiting/etiology , Abdominal Pain/diagnosis , Abdominal Pain/microbiology , Abdominal Pain/pathology , Animals , COVID-19/diagnosis , COVID-19/microbiology , COVID-19/pathology , Diarrhea/diagnosis , Diarrhea/microbiology , Diarrhea/pathology , Feces/microbiology , Feces/virology , Humans , Nausea/diagnosis , Nausea/microbiology , Nausea/pathology , SARS-CoV-2/isolation & purification , Vomiting/diagnosis , Vomiting/microbiology , Vomiting/pathology
SELECTION OF CITATIONS
SEARCH DETAIL