Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Nat Commun ; 13(1): 1976, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1783980

ABSTRACT

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The initial C.1.2 detection is associated with a high substitution rate, and includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 variants of concern or variants of interest. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta show high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Emerg Infect Dis ; 28(5)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1760190

ABSTRACT

By November 2021, after the third wave of severe acute respiratory syndrome coronavirus 2 infections in South Africa, seroprevalence was 60% in a rural community and 70% in an urban community. High seroprevalence before the Omicron variant emerged may have contributed to reduced illness severity observed in the fourth wave.

4.
Mol Biol Evol ; 39(4)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1758789

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Lancet Infect Dis ; 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1740327

ABSTRACT

BACKGROUND: By August, 2021, South Africa had been affected by three waves of SARS-CoV-2; the second associated with the beta variant and the third with the delta variant. Data on SARS-CoV-2 burden, transmission, and asymptomatic infections from Africa are scarce. We aimed to evaluate SARS-CoV-2 burden and transmission in one rural and one urban community in South Africa. METHODS: We conducted a prospective cohort study of households in Agincourt, Mpumalanga province (rural site) and Klerksdorp, North West province (urban site) from July, 2020 to August, 2021. We randomly selected households for the rural site from a health and sociodemographic surveillance system and for the urban site using GPS coordinates. Households with more than two members and where at least 75% of members consented to participate were eligible. Midturbinate nasal swabs were collected twice a week from household members irrespective of symptoms and tested for SARS-CoV-2 using real-time RT-PCR (RT-rtPCR). Serum was collected every 2 months and tested for anti-SARS-CoV-2 antibodies. Main outcomes were the cumulative incidence of SARS-CoV-2 infection, frequency of reinfection, symptomatic fraction (percent of infected individuals with ≥1 symptom), the duration of viral RNA shedding (number of days of SARS-CoV-2 RT-rtPCR positivity), and the household cumulative infection risk (HCIR; number of infected household contacts divided by the number of susceptible household members). FINDINGS: 222 households (114 at the rural site and 108 at the urban site), and 1200 household members (643 at the rural site and 557 at the urban site) were included in the analysis. For 115 759 nasal specimens from 1200 household members (follow-up 92·5%), 1976 (1·7%) were SARS-CoV-2-positive on RT-rtPCR. By RT-rtPCR and serology combined, 749 of 1200 individuals (62·4% [95% CI 58·1-66·4]) had at least one SARS-CoV-2 infection episode, and 87 of 749 (11·6% [9·4-14·2]) were reinfected. The mean infection episode duration was 11·6 days (SD 9·0; range 4-137). Of 662 RT-rtPCR-confirmed episodes (>14 days after the start of follow-up) with available data, 97 (14·7% [11·9-17·9]) were symptomatic with at least one symptom (in individuals aged <19 years, 28 [7·5%] of 373 episodes symptomatic; in individuals aged ≥19 years, 69 [23·9%] of 289 episodes symptomatic). Among 222 households, 200 (90·1% [85·3-93·7]) had at least one SARS-CoV-2-positive individual on RT-rtPCR or serology. HCIR overall was 23·9% (195 of 817 susceptible household members infected [95% CI 19·8-28·4]). HCIR was 23·3% (20 of 86) for symptomatic index cases and 23·9% (175 of 731) for asymptomatic index cases (univariate odds ratio [OR] 1·0 [95% CI 0·5-2·0]). On multivariable analysis, accounting for age and sex, low minimum cycle threshold value (≤30 vs >30) of the index case (OR 5·3 [2·3-12·4]) and beta and delta variant infection (vs Wuhan-Hu-1, OR 3·3 [1·4-8·2] and 10·4 [4·1-26·7], respectively) were associated with increased HCIR. People living with HIV who were not virally supressed (≥400 viral load copies per mL) were more likely to develop symptomatic illness when infected with SAR-CoV-2 (OR 3·3 [1·3-8·4]), and shed SARS-CoV-2 for longer (hazard ratio 0·4 [95% CI 0·3-0·6]) compared with HIV-uninfected individuals. INTERPRETATION: In this study, 565 (85·3%) SARS-CoV-2 infections were asymptomatic and index case symptom status did not affect HCIR, suggesting a limited role for control measures targeting symptomatic individuals. Increased household transmission of beta and delta variants was likely to have contributed to successive waves of SARS-CoV-2 infection, with more than 60% of individuals infected by the end of follow-up. FUNDING: US CDC, South Africa National Institute for Communicable Diseases, and Wellcome Trust.

6.
Clin Infect Dis ; 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1735548

ABSTRACT

BACKGROUND: Seroprevalence studies are important for quantifying the burden of SARS-CoV-2 infections in resource-constrained countries. METHODS: We conducted a cross-sectional household survey spanning the second pandemic wave (November 2020 - April 2021) in three communities. Blood was collected for SARS-CoV-2 antibody (two ELISA assays targeting spike and nucleocapsid) and HIV testing. An individual was considered seropositive if testing positive on ≥1 assay. Factors associated with infection, and the age-standardised infection to case detection rate (ICR), infection hospitalisation rate (IHR) and infection fatality rate (IFR) were calculated. RESULTS: Overall 7959 participants were enrolled, with a median age of 34 years and HIV prevalence of 22.7%. SARS-CoV-2 seroprevalence was 45.2% (95% confidence interval 43.7% - 46.7%), and increased from 26.9% among individuals enrolled in December 2020 to 47.1% among individuals in April 2021. On multivariable analysis, seropositivity was associated with age, sex, race, being overweight/obese, having respiratory symptoms, and low socioeconomic status. Persons living with HIV (PLWHIV) with high viral load were less likely to be seropositive compared to HIV-uninfected individuals. The site-specific ICR, IHR and IFR ranged across sites from 4.4% to 8.2%, 1.2% to 2.5% and 0.3% to 0.6%, respectively. CONCLUSIONS: South Africa has experienced a large burden of SARS-CoV-2 infections, with <10% of infections diagnosed. Lower seroprevalence among non-virally suppressed PLWHIV, likely as a result of inadequate antibody production, highlights the need to prioritise this group for intervention.

7.
Sci Rep ; 12(1): 2552, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692551

ABSTRACT

There is a need for effective therapy for COVID-19 pneumonia. Convalescent plasma has antiviral activity and early observational studies suggested benefit in reducing COVID-19 severity. We investigated the safety and efficacy of convalescent plasma in hospitalized patients with COVID-19 in a population with a high HIV prevalence and where few therapeutic options were available. We performed a double-blinded, multicenter, randomized controlled trial in one private and three public sector hospitals in South Africa. Adult participants with COVID-19 pneumonia requiring non-invasive oxygen were randomized 1:1 to receive a single transfusion of 200 mL of either convalescent plasma or 0.9% saline solution. The primary outcome measure was hospital discharge and/or improvement of ≥ 2 points on the World Health Organisation Blueprint Ordinal Scale for Clinical Improvement by day 28 of enrolment. The trial was stopped early for futility by the Data and Safety Monitoring Board. 103 participants, including 21 HIV positive individuals, were randomized at the time of premature trial termination: 52 in the convalescent plasma and 51 in the placebo group. The primary outcome occurred in 31 participants in the convalescent plasma group and and 32 participants in the placebo group (relative risk 1.03 (95% CI 0.77 to 1.38). Two grade 1 transfusion-related adverse events occurred. Participants who improved clinically received convalescent plasma with a higher median anti-SARS-CoV-2 neutralizing antibody titre compared with those who did not (298 versus 205 AU/mL). Our study contributes additional evidence for recommendations against the use of convalescent plasma for COVID-19 pneumonia. Safety and feasibility in this population supports future investigation for other indications.


Subject(s)
COVID-19/therapy , Adult , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Double-Blind Method , Female , HIV Infections/complications , Hospitals, Public , Humans , Immunization, Passive , Kaplan-Meier Estimate , Male , Middle Aged , Placebo Effect , SARS-CoV-2/isolation & purification , Severity of Illness Index , South Africa , Treatment Outcome
8.
Clin Infect Dis ; 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1672152

ABSTRACT

BACKGROUND: We assessed SARS-CoV-2 RNA shedding duration and magnitude amongst persons living with HIV (PLHIV). METHODS: From May through December 2020, we conducted a prospective cohort study at 20 hospitals in South Africa. Adults hospitalised with symptomatic COVID-19 were enrolled and followed every two days with nasopharyngeal/oropharyngeal (NP/OP) swabs until documentation of cessation of SARS-CoV-2 shedding (two consecutive negative NP/OP swabs). Real-time reverse transcription-polymerase chain reaction testing for SARS-CoV-2 was performed and Cycle-threshold (Ct) values <30 were considered a proxy for high SARS-CoV-2 viral load. Factors associated with prolonged shedding were assessed using accelerated time-failure Weibull regression models. RESULTS: Of 2,175 COVID-19 patients screened, 300 were enrolled and 257 individuals (155 HIV-uninfected and 102 PLHIV) had >1 swabbing visit (median 5 visits (range2-21)). Median time to cessation of shedding was 13 days (inter-quartile range (IQR)6-25) and did not differ significantly by HIV-infection. DISCUSSION: Amongst a subset of 94 patients (41 PLHIV and 53 HIV-uninfected) with initial respiratory sample Ct-value <30, median time of shedding at high SARS-CoV-2 viral load was 8 days (IQR4-17). This was significantly longer in PLHIV with CD4 count<200cells/µl, compared to HIV-uninfected persons (median 27 days (IQR8-43) versus 7 days (IQR 4-13); aHR 0.14, 95%CI 0.07-0.28, p<0.001), with similar results in unsuppressed-HIV versus HIV-uninfected persons. CONCLUSION: Although SARS-CoV-2 shedding duration did not differ significantly by HIV-infection, amongst a subset with high initial SARS-CoV-2 viral loads, immunocompromised PLHIV shed SARS-CoV-2 at high viral loads for longer than HIV-uninfected persons. Better HIV control may potentially decrease transmission time of SARS-CoV-2.

9.
Nature ; 603(7901): 488-492, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661968

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Subject(s)
COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Adult , Aged , COVID-19 Vaccines/immunology , Convalescence , Hospitalization , Humans , Middle Aged , SARS-CoV-2/chemistry , SARS-CoV-2/classification
10.
Lancet ; 399(10323): 437-446, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1641746

ABSTRACT

BACKGROUND: The SARS-CoV-2 omicron variant of concern was identified in South Africa in November, 2021, and was associated with an increase in COVID-19 cases. We aimed to assess the clinical severity of infections with the omicron variant using S gene target failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. METHODS: We did data linkages for national, South African COVID-19 case data, SARS-CoV-2 laboratory test data, SARS-CoV-2 genome data, and COVID-19 hospital admissions data. For individuals diagnosed with COVID-19 via TaqPath PCR tests, infections were designated as either SGTF or non-SGTF. The delta variant was identified by genome sequencing. Using multivariable logistic regression models, we assessed disease severity and hospitalisations by comparing individuals with SGTF versus non-SGTF infections diagnosed between Oct 1 and Nov 30, 2021, and we further assessed disease severity by comparing SGTF-infected individuals diagnosed between Oct 1 and Nov 30, 2021, with delta variant-infected individuals diagnosed between April 1 and Nov 9, 2021. FINDINGS: From Oct 1 (week 39), 2021, to Dec 6 (week 49), 2021, 161 328 cases of COVID-19 were reported in South Africa. 38 282 people were diagnosed via TaqPath PCR tests and 29 721 SGTF infections and 1412 non-SGTF infections were identified. The proportion of SGTF infections increased from two (3·2%) of 63 in week 39 to 21 978 (97·9%) of 22 455 in week 48. After controlling for factors associated with hospitalisation, individuals with SGTF infections had significantly lower odds of admission than did those with non-SGTF infections (256 [2·4%] of 10 547 vs 121 [12·8%] of 948; adjusted odds ratio [aOR] 0·2, 95% CI 0·1-0·3). After controlling for factors associated with disease severity, the odds of severe disease were similar between hospitalised individuals with SGTF versus non-SGTF infections (42 [21%] of 204 vs 45 [40%] of 113; aOR 0·7, 95% CI 0·3-1·4). Compared with individuals with earlier delta variant infections, SGTF-infected individuals had a significantly lower odds of severe disease (496 [62·5%] of 793 vs 57 [23·4%] of 244; aOR 0·3, 95% CI 0·2-0·5), after controlling for factors associated with disease severity. INTERPRETATION: Our early analyses suggest a significantly reduced odds of hospitalisation among individuals with SGTF versus non-SGTF infections diagnosed during the same time period. SGTF-infected individuals had a significantly reduced odds of severe disease compared with individuals infected earlier with the delta variant. Some of this reduced severity is probably a result of previous immunity. FUNDING: The South African Medical Research Council, the South African National Department of Health, US Centers for Disease Control and Prevention, the African Society of Laboratory Medicine, Africa Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the Fleming Fund.


Subject(s)
COVID-19/physiopathology , Hospitalization/statistics & numerical data , SARS-CoV-2/genetics , Severity of Illness Index , Adolescent , Adult , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Female , Genome, Viral , Humans , Information Storage and Retrieval , Logistic Models , Male , Middle Aged , Multivariate Analysis , Odds Ratio , South Africa/epidemiology , Young Adult
11.
Nature ; 602(7898): 654-656, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616992

ABSTRACT

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Line , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
12.
Emerg Infect Dis ; 27(12): 3020-3029, 2021 12.
Article in English | MEDLINE | ID: covidwho-1556378

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections may be underestimated because of limited access to testing. We measured SARS-CoV-2 seroprevalence in South Africa every 2 months during July 2020-March 2021 in randomly selected household cohorts in 2 communities. We compared seroprevalence to reported laboratory-confirmed infections, hospitalizations, and deaths to calculate infection-case, infection-hospitalization, and infection-fatality ratios in 2 waves of infection. Post-second wave seroprevalence ranged from 18% in the rural community children <5 years of age, to 59% in urban community adults 35-59 years of age. The second wave saw a shift in age distribution of case-patients in the urban community (from persons 35-59 years of age to persons at the extremes of age), higher attack rates in the rural community, and a higher infection-fatality ratio in the urban community. Approximately 95% of SARS-CoV-2 infections were not reported to national surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , Middle Aged , Rural Population , Seroepidemiologic Studies , South Africa/epidemiology
13.
Lancet Glob Health ; 9(9): e1216-e1225, 2021 09.
Article in English | MEDLINE | ID: covidwho-1368858

ABSTRACT

BACKGROUND: The first wave of COVID-19 in South Africa peaked in July, 2020, and a larger second wave peaked in January, 2021, in which the SARS-CoV-2 501Y.V2 (Beta) lineage predominated. We aimed to compare in-hospital mortality and other patient characteristics between the first and second waves. METHODS: In this prospective cohort study, we analysed data from the DATCOV national active surveillance system for COVID-19 admissions to hospital from March 5, 2020, to March 27, 2021. The system contained data from all hospitals in South Africa that have admitted a patient with COVID-19. We used incidence risk for admission to hospital and determined cutoff dates to define five wave periods: pre-wave 1, wave 1, post-wave 1, wave 2, and post-wave 2. We compared the characteristics of patients with COVID-19 who were admitted to hospital in wave 1 and wave 2, and risk factors for in-hospital mortality accounting for wave period using random-effect multivariable logistic regression. FINDINGS: Peak rates of COVID-19 cases, admissions, and in-hospital deaths in the second wave exceeded rates in the first wave: COVID-19 cases, 240·4 cases per 100 000 people vs 136·0 cases per 100 000 people; admissions, 27·9 admissions per 100 000 people vs 16·1 admissions per 100 000 people; deaths, 8·3 deaths per 100 000 people vs 3·6 deaths per 100 000 people. The weekly average growth rate in hospital admissions was 20% in wave 1 and 43% in wave 2 (ratio of growth rate in wave 2 compared with wave 1 was 1·19, 95% CI 1·18-1·20). Compared with the first wave, individuals admitted to hospital in the second wave were more likely to be age 40-64 years (adjusted odds ratio [aOR] 1·22, 95% CI 1·14-1·31), and older than 65 years (aOR 1·38, 1·25-1·52), compared with younger than 40 years; of Mixed race (aOR 1·21, 1·06-1·38) compared with White race; and admitted in the public sector (aOR 1·65, 1·41-1·92); and less likely to be Black (aOR 0·53, 0·47-0·60) and Indian (aOR 0·77, 0·66-0·91), compared with White; and have a comorbid condition (aOR 0·60, 0·55-0·67). For multivariable analysis, after adjusting for weekly COVID-19 hospital admissions, there was a 31% increased risk of in-hospital mortality in the second wave (aOR 1·31, 95% CI 1·28-1·35). In-hospital case-fatality risk increased from 17·7% in weeks of low admission (<3500 admissions) to 26·9% in weeks of very high admission (>8000 admissions; aOR 1·24, 1·17-1·32). INTERPRETATION: In South Africa, the second wave was associated with higher incidence of COVID-19, more rapid increase in admissions to hospital, and increased in-hospital mortality. Although some of the increased mortality can be explained by admissions in the second wave being more likely in older individuals, in the public sector, and by the increased health system pressure, a residual increase in mortality of patients admitted to hospital could be related to the new Beta lineage. FUNDING: DATCOV as a national surveillance system is funded by the National Institute for Communicable Diseases and the South African National Government.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , South Africa/epidemiology
14.
Euro Surveill ; 26(29)2021 07.
Article in English | MEDLINE | ID: covidwho-1323058

ABSTRACT

BackgroundIn South Africa, COVID-19 control measures to prevent SARS-CoV-2 spread were initiated on 16 March 2020. Such measures may also impact the spread of other pathogens, including influenza virus and respiratory syncytial virus (RSV) with implications for future annual epidemics and expectations for the subsequent northern hemisphere winter.MethodsWe assessed the detection of influenza and RSV through facility-based syndromic surveillance of adults and children with mild or severe respiratory illness in South Africa from January to October 2020, and compared this with surveillance data from 2013 to 2019.ResultsFacility-based surveillance revealed a decline in influenza virus detection during the regular season compared with previous years. This was observed throughout the implementation of COVID-19 control measures. RSV detection decreased soon after the most stringent COVID-19 control measures commenced; however, an increase in RSV detection was observed after the typical season, following the re-opening of schools and the easing of measures.ConclusionCOVID-19 non-pharmaceutical interventions led to reduced circulation of influenza and RSV in South Africa. This has limited the country's ability to provide influenza virus strains for the selection of the annual influenza vaccine. Delayed increases in RSV case numbers may reflect the easing of COVID-19 control measures. An increase in influenza virus detection was not observed, suggesting that the measures may have impacted the two pathogens differently. The impact that lowered and/or delayed influenza and RSV circulation in 2020 will have on the intensity and severity of subsequent annual epidemics is unknown and warrants close monitoring.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Child , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , SARS-CoV-2 , South Africa/epidemiology
15.
Nat Med ; 27(3): 440-446, 2021 03.
Article in English | MEDLINE | ID: covidwho-1319035

ABSTRACT

The first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in South Africa was identified on 5 March 2020, and by 26 March the country was in full lockdown (Oxford stringency index of 90)1. Despite the early response, by November 2020, over 785,000 people in South Africa were infected, which accounted for approximately 50% of all known African infections2. In this study, we analyzed 1,365 near whole genomes and report the identification of 16 new lineages of SARS-CoV-2 isolated between 6 March and 26 August 2020. Most of these lineages have unique mutations that have not been identified elsewhere. We also show that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the first wave, comprising ~42% of all infections in the country at the time. The newly identified C lineage of SARS-CoV-2, C.1, which has 16 nucleotide mutations as compared with the original Wuhan sequence, including one amino acid change on the spike protein, D614G (ref. 3), was the most geographically widespread lineage in South Africa by the end of August 2020. An early South African-specific lineage, B.1.106, which was identified in April 2020 (ref. 4), became extinct after nosocomial outbreaks were controlled in KwaZulu-Natal Province. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify new lineages and inform measures to control the spread of SARS-CoV-2. Such genomic surveillance presented in this study has been shown to be crucial in the identification of the 501Y.V2 variant in South Africa in December 2020 (ref. 5).


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Datasets as Topic , Genome, Viral , Humans , Molecular Typing , Mutation , Pandemics , Phylogeny , Phylogeography , Real-Time Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , South Africa/epidemiology , Whole Genome Sequencing
18.
Nature ; 592(7854): 438-443, 2021 04.
Article in English | MEDLINE | ID: covidwho-1164876

ABSTRACT

Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is creating conditions for substantial evolutionary changes to the virus1,2. Here we describe a newly arisen lineage of SARS-CoV-2 (designated 501Y.V2; also known as B.1.351 or 20H) that is defined by eight mutations in the spike protein, including three substitutions (K417N, E484K and N501Y) at residues in its receptor-binding domain that may have functional importance3-5. This lineage was identified in South Africa after the first wave of the epidemic in a severely affected metropolitan area (Nelson Mandela Bay) that is located on the coast of the Eastern Cape province. This lineage spread rapidly, and became dominant in Eastern Cape, Western Cape and KwaZulu-Natal provinces within weeks. Although the full import of the mutations is yet to be determined, the genomic data-which show rapid expansion and displacement of other lineages in several regions-suggest that this lineage is associated with a selection advantage that most plausibly results from increased transmissibility or immune escape6-8.


Subject(s)
COVID-19/virology , Mutation , Phylogeny , Phylogeography , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , DNA Mutational Analysis , Evolution, Molecular , Genetic Fitness , Humans , Immune Evasion , Models, Molecular , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Selection, Genetic , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
19.
N Engl J Med ; 384(20): 1885-1898, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1135713

ABSTRACT

BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132).


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adenoviridae , Adolescent , Adult , Antibodies, Neutralizing/physiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Middle Aged , South Africa , T-Lymphocytes/physiology , Treatment Failure , Vaccine Potency , Young Adult
20.
Nat Med ; 27(4): 622-625, 2021 04.
Article in English | MEDLINE | ID: covidwho-1114719

ABSTRACT

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.


Subject(s)
COVID-19/immunology , Immune Evasion , Neutralization Tests , SARS-CoV-2/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Blood Donors , COVID-19 Vaccines/immunology , Humans , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL