Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Year range
1.
Patient Saf Surg ; 16(1): 26, 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-2032619

ABSTRACT

BACKGROUND: Airborne transmission diseases can transfer long and short distances via sneezing, coughing, and breathing. These airborne repertory particles can convert to aerosol particles and travel with airflow. During the Coronavirus disease 2019 (COVID-19) pandemic, many surgeries have been delayed, increasing the demand for establishing a clean environment for both patient and surgical team in the operating room. METHODS: This study aims to investigate the hypothesis of implementing a protective curtain to reduce the transmission of infectious contamination in the surgical microenvironment of an operating room. In this regard, the spread of an airborne transmission disease from the patient was evaluated, consequently, the exposure level of the surgical team. In the first part of this study, a mock surgical experiment was established in the operating room of an academic medical center in Norway. In the second part, the computational fluid dynamic technique was performed to investigate the spread of airborne infectious diseases. Furthermore, the field measurement was used to validate the numerical model and guarantee the accuracy of the applied numerical models. RESULTS: The results showed that the airborne infectious agents reached the breathing zone of the surgeons. However, using a protective curtain to separate the microenvironment between the head and lower body of the patient resulted in a 75% reduction in the spread of the virus to the breathing zone of the surgeons. The experimental results showed a surface temperature of 40 ˚C, which was about a 20 ˚C increase in temperature, at the wound area using a high intensity of the LED surgical lamps. Consequently, this temperature increase can raise the patient's thermal injury risk. CONCLUSION: The novel method of using a protective curtain can increase the safety of the surgical team during the surgery with a COVID-19 patient in the operating room.

2.
Sci Rep ; 12(1): 11481, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921720

ABSTRACT

With a modified version of the Wells-Riley model, we simulated the size distribution and dynamics of five airborne viruses (measles, influenza, SARS-CoV-2, human rhinovirus, and adenovirus) emitted from a speaking person in a typical residential setting over a relative humidity (RH) range of 20-80% and air temperature of 20-25 °C. Besides the size transformation of virus-containing droplets due to evaporation, respiratory absorption, and then removal by gravitational settling, the modified model also considered the removal mechanism by ventilation. The trend and magnitude of RH impact depended on the respiratory virus. For rhinovirus and adenovirus humidifying the indoor air from 20/30 to 50% will be increasing the relative infection risk, however, this relative infection risk increase will be negligible for rhinovirus and weak for adenovirus. Humidification will have a potential benefit in decreasing the infection risk only for influenza when there is a large infection risk decrease for humidifying from 20 to 50%. Regardless of the dry solution composition, humidification will overall increase the infection risk via long-range airborne transmission of SARS-CoV-2. Compared to humidification at a constant ventilation rate, increasing the ventilation rate to moderate levels 0.5 → 2.0 h-1 will have a more beneficial infection risk decrease for all viruses except for influenza. Increasing the ventilation rate from low values of 0.5 h-1 to higher levels of 6 h-1 will have a dominating effect on reducing the infection risk regardless of virus type.


Subject(s)
Air Pollution, Indoor , COVID-19 , Infections , Influenza, Human , Air Pollution, Indoor/adverse effects , Humans , Humidity , SARS-CoV-2
3.
Build Environ ; 217: 109091, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1800176

ABSTRACT

The purpose of this study was to reveal the exposure level of surgical staff to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the patient's nose and wound during operations on COVID-19 patients. The tracer gas N2O is used to simulate SARS-CoV-2 from the patient's nose and wound. In this study, concentration levels of tracer gas were measured in the breathing zones of these surgical staff in the operating room under three pressure difference conditions: -5 pa-15 pa and -25 pa compared to the adjunction room. These influencing factors on exposure level are analyzed in terms of ventilation efficiency and the thermal plume distribution characteristics of the patient. The results show that the assistant surgeon faces 4 to 12 times higher levels of exposure to SARS-CoV-2 than other surgical staff. Increasing the pressure difference between the OR lab and adjunction room can reduce the level of exposure for the main surgeon and assistant surgeon. Turning on the cooling fan of the endoscope imager may result in a higher exposure level for the assistant surgeon. Surgical nurses outside of the surgical microenvironment are exposed to similar contaminant concentration levels in the breathing zone as in the exhaust. However, the ventilation efficiency is not constant near the surgical patient or in the rest of the room and will vary with a change in pressure difference. This may suggest that the air may not be fully mixed in the surgical microenvironment.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330049

ABSTRACT

With a modified version of the Wells-Riley model, we simulated the size distribution and dynamics of five airborne viruses (measles, influenza, SARS-CoV-2, human rhinovirus, and adenovirus) emitted from a speaking person in a typical residential setting over a relative humidity (RH) range of 20 to 80 % and air temperature of 20-25 °C. Besides the size transformation of virus-containing droplets due to evaporation, respiratory absorption and then removal by gravitational settling, the modified model also considered the removal mechanism by ventilation. The trend and magnitude of RH impact depended on the respiratory virus. For rhinovirus and adenovirus humidifying the indoor air from 20/30 % to 50 % will be increasing the relative infection risk, however, this relative infection risk increase will be negligible for rhinovirus and weak for adenovirus. Humidification will have a potential benefit in decreasing the infection risk only for influenza when there is a large infection risk decrease for humidifying from 20 % to 50 %. Regardless of the dry solution composition, humidification will overall increase the infection risk via long-range airborne transmission of SARS-CoV-2.Compared to humidification at a constant ventilation rate, increasing the ventilation rate to moderate levels 0.5 → 2.0 h −1 will have a more beneficial to infection risk decrease for all viruses except for influenza. Increasing the ventilation rate from low values of 0.5 h −1 to higher levels of 6 h −1 will have the dominating effect on reducing the infection risk regardless of virus type.

5.
Build Environ ; 205: 108278, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1370455

ABSTRACT

A novel modified version of the Wells-Riley model was used to estimate the impact of relative humidity (RH) on the removal of respiratory droplets containing the SARS-CoV-2 virus by deposition through gravitational settling and its inactivation by biological decay; the effect of RH on susceptibility to SARS-CoV-2 was not considered. These effects were compared with the removal achieved by increased ventilation rate with outdoor air. Modeling was performed assuming that the infected person talked continuously for 60 and 120 min. The results of modeling showed that the relative impact of RH on the infection risk depended on the ventilation rate and the size range of virus-laden droplets. A ventilation rate of 0.5 ACH, the change of RH between 20% and 53% was predicted to have a small effect on the infection risk, while at a ventilation rate of 6 ACH this change had nearly no effect. On the contrary, increasing the ventilation rate from 0.5 ACH to 6 ACH was predicted to decrease the infection risk by half which is remarkably larger effect compared with that predicted for RH. It is thus concluded that increasing the ventilation rate is more beneficial for reducing the airborne levels of SARS-CoV-2 than changing indoor RH. PRACTICAL IMPLICATIONS: The present results show that humidification to moderate levels of 40%-60% RH should not be expected to provide a significant reduction in infection risk caused by SARS-CoV-2, hence installing and running humidifiers may not be an efficient solution to reduce the risk of COVID-19 disease in indoor spaces. The results do however confirm that ventilation has a key role in controlling SARS-CoV-2 virus concentration in the air providing considerably higher benefits. The modified model developed in the present work can be used by public health experts, engineers, and epidemiologists when selecting different measures to reduce the infection risk from SARS-CoV-2 indoors allowing informed decisions concerning indoor environmental control.

SELECTION OF CITATIONS
SEARCH DETAIL