Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Infection ; 2022 May 20.
Article in English | MEDLINE | ID: covidwho-2231568


PURPOSE: Omicron is rapidly spreading as a new SARS-CoV-2 variant of concern (VOC). The question whether this new variant has an impact on SARS-CoV-2 rapid antigen test (RAT) performance is of utmost importance. To obtain an initial estimate regarding differences of RATs in detecting omicron and delta, seven commonly used SARS-CoV-2 RATs from different manufacturers were analysed using cell culture supernatants and clinical specimens. METHODS: For this purpose, cell culture-expanded omicron and delta preparations were serially diluted in Dulbecco's modified Eagle's Medium (DMEM) and the Limit of Detection (LoD) for both VOCs was determined. Additionally, clinical specimens stored in viral transport media or saline (n = 51) were investigated to complement in vitro results with cell culture supernatants. Ct values and RNA concentrations were determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The in vitro determination of the LoD showed no obvious differences in detection of omicron and delta for the RATs examined. The LoD in this study was at a dilution level of 1:1,000 (corresponding to 3.0-5.6 × 106 RNA copies/mL) for tests I-V and at a dilution level of 1:100 (corresponding to 3.7-4.9 × 107 RNA copies/mL) for tests VI and VII. Based on clinical specimens, no obvious differences were observed between RAT positivity rates when comparing omicron to delta in this study setting. Overall positivity rates varied between manufacturers with 30-81% for omicron and 42-71% for delta. Test VII was only conducted in vitro with cell culture supernatants for feasibility reasons. In the range of Ct < 23, positivity rates were 50-100% for omicron and 67-93% for delta. CONCLUSION: In this study, RATs from various manufacturers were investigated, which displayed no obvious differences in terms of analytical LoD in vitro and RAT positivity rates based on clinical samples comparing the VOCs omicron and delta. However, differences between tests produced by various manufacturers were detected. In terms of clinical samples, a focus of this study was on specimens with high virus concentrations. Further systematic, clinical and laboratory studies utilizing large datasets are urgently needed to confirm reliable performance in terms of sensitivity and specificity for all individual RATs and SARS-CoV-2 variants.

Microorganisms ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2033059


Background: Despite a vaccination rate of 82.0% (n = 123/150), a SARS-CoV-2 (Alpha) outbreak with 64.7% (n = 97/150) confirmed infections occurred in a nursing home in Bavaria, Germany. Objective: the aim of this retrospective cohort study was to examine the effects of the Corminaty vaccine in a real-life outbreak situation and to obtain insights into the antibody response to both vaccination and breakthrough infection. Methods: the antibody status of 106 fully vaccinated individuals (54/106 breakthrough infections) and epidemiological data on all 150 residents and facility staff were evaluated. Results: SARS-CoV-2 infections (positive RT-qPCR) were detected in 56.9% (n = 70/123) of fully vaccinated, compared to 100% (n = 27/27) of incompletely or non-vaccinated individuals. The proportion of hospitalized and deceased was 4.1% (n = 5/123) among fully vaccinated and therewith lower compared to 18.5% (n = 5/27) hospitalized and 11.1% (n = 3/27) deceased among incompletely or non-vaccinated. Ct values were significantly lower in incompletely or non-vaccinated (p = 0.02). Neutralizing antibodies were detected in 99.1% (n = 105/106) of serum samples with significantly higher values (p < 0.001) being measured post-breakthrough infection. α-N-antibodies were detected in 37.7% of PCR positive but not in PCR negative individuals. Conclusion: Altogether, our data indicate that SARS-CoV-2 vaccination does provide protection against infection, severe disease progression and death with regards to the Alpha variant. Nonetheless, it also shows that infection and transmission are possible despite full vaccination. It further indicates that breakthrough infections can significantly enhance α-S- and neutralizing antibody responses, indicating a possible benefit from booster vaccinations.