Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Atmos Pollut Res ; 13(11): 101594, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2104373

ABSTRACT

Nowadays, there has been a substantial proliferation in the use of low-cost particulate matter (PM) sensors and facilitating as an indicator of overall air quality. However, during COVID-19 epidemics, air pollution sources have been deteriorated significantly, and given offer to evaluate the impact of COVID-19 on air quality in the world's most polluted city: Delhi, India. To address low-cost PM sensors, this study aimed to a) conduct a long-term field inter-comparison of twenty-two (22) low-cost PM sensors with reference instruments over 10-month period (evaluation period) spanning months from May 2019 to February 2020; b) trend of PM mass and number count; and c) probable local and regional sources in Delhi during Pre-CVOID (P-COVID) periods. The comparison of low-cost PM sensors with reference instruments results found with R2 ranging between 0.74 and 0.95 for all sites and confirm that PM sensors can be a useful tool for PM monitoring network in Delhi. Relative reductions in PM2.5 and particle number count (PNC) due to COVID-outbreaks showed in the range between (2-5%) and (4-13%), respectively, as compared to the P-COVID periods. The cluster analysis reveals air masses originated ∼52% from local, while ∼48% from regional sources in P-COVID and PM levels are encountered 47% and 66-70% from local and regional sources, respectively. Overall results suggest that low-cost PM sensors can be used as an unprecedented aid in air quality applications, and improving non-attainment cities in India, and that policy makers can attempt to revise guidelines for clean air.

2.
Infect Control Hosp Epidemiol ; : 1-6, 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1805485

ABSTRACT

OBJECTIVE: To determine the impact of various aerosol mitigation interventions and to establish duration of aerosol persistence in a variety of dental clinic configurations. METHODS: We performed aerosol measurement studies in endodontic, orthodontic, periodontic, pediatric, and general dentistry clinics. We used an optical aerosol spectrometer and wearable particulate matter sensors to measure real-time aerosol concentration from the vantage point of the dentist during routine care in a variety of clinic configurations (eg, open bay, single room, partitioned operatories). We compared the impact of aerosol mitigation strategies (eg, ventilation and high-volume evacuation (HVE), and prevalence of particulate matter) in the dental clinic environment before, during, and after high-speed drilling, slow-speed drilling, and ultrasonic scaling procedures. RESULTS: Conical and ISOVAC HVE were superior to standard-tip evacuation for aerosol-generating procedures. When aerosols were detected in the environment, they were rapidly dispersed within minutes of completing the aerosol-generating procedure. Few aerosols were detected in dental clinics, regardless of configuration, when conical and ISOVAC HVE were used. CONCLUSIONS: Dentists should consider using conical or ISOVAC HVE rather than standard-tip evacuators to reduce aerosols generated during routine clinical practice. Furthermore, when such effective aerosol mitigation strategies are employed, dentists need not leave dental chairs fallow between patients because aerosols are rapidly dispersed.

4.
BMJ Open ; 11(9): e045557, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1394106

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has precipitated widespread shortages of filtering facepiece respirators (FFRs) and the creation and sharing of proposed substitutes (novel designs, repurposed materials) with limited testing against regulatory standards. We aimed to categorically test the efficacy and fit of potential N95 respirator substitutes using protocols that can be replicated in university laboratories. SETTING: Academic medical centre with occupational health-supervised fit testing along with laboratory studies. PARTICIPANTS: Seven adult volunteers who passed quantitative fit testing for small-sized (n=2) and regular-sized (n=5) commercial N95 respirators. METHODS: Five open-source potential N95 respirator substitutes were evaluated and compared with commercial National Institute for Occupational Safety and Health (NIOSH)-approved N95 respirators as controls. Fit testing using the 7-minute standardised Occupational Safety and Health Administration fit test was performed. In addition, protocols that can be performed in university laboratories for materials testing (filtration efficiency, air resistance and fluid resistance) were developed to evaluate alternate filtration materials. RESULTS: Among five open-source, improvised substitutes evaluated in this study, only one (which included a commercial elastomeric mask and commercial HEPA filter) passed a standard quantitative fit test. The four alternative materials evaluated for filtration efficiency (67%-89%) failed to meet the 95% threshold at a face velocity (7.6 cm/s) equivalent to that of a NIOSH particle filtration test for the control N95 FFR. In addition, for all but one material, the small surface area of two 3D-printed substitutes resulted in air resistance that was above the maximum in the NIOSH standard. CONCLUSIONS: Testing protocols such as those described here are essential to evaluate proposed improvised respiratory protection substitutes, and our testing platform could be replicated by teams with similar cross-disciplinary research capacity. Healthcare professionals should be cautious of claims associated with improvised respirators when suggested as FFR substitutes.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Adult , Equipment Design , Humans , N95 Respirators , Pandemics/prevention & control , SARS-CoV-2 , United States , Ventilators, Mechanical
5.
J Aerosol Sci ; 152: 105693, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1392358

ABSTRACT

The COVID-19 pandemic has brought an unprecedented crisis to the global health sector. When discharging COVID-19 patients in accordance with throat or nasal swab protocols using RT-PCR, the potential risk of reintroducing the infection source to humans and the environment must be resolved. Here, 14 patients including 10 COVID-19 subjects were recruited; exhaled breath condensate (EBC), air samples and surface swabs were collected and analyzed for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) in four hospitals with applied natural ventilation and disinfection practices in Wuhan. Here we discovered that 22.2% of COVID-19 patients (n = 9), who were ready for hospital discharge based on current guidelines, had SARS-CoV-2 in their exhaled breath (~105 RNA copies/m3). Although fewer surface swabs (3.1%, n = 318) tested positive, medical equipment such as face shield frequently contacted/used by healthcare workers and the work shift floor were contaminated by SARS-CoV-2 (3-8 viruses/cm2). Three of the air samples (n = 44) including those collected using a robot-assisted sampler were detected positive by a digital PCR with a concentration level of 9-219 viruses/m3. RT-PCR diagnosis using throat swab specimens had a failure rate of more than 22% in safely discharging COVID-19 patients who were otherwise still exhaling the SARS-CoV-2 by a rate of estimated ~1400 RNA copies per minute into the air. Direct surface contact might not represent a major transmission route, and lower positive rate of air sample (6.8%) was likely due to natural ventilation (1.6-3.3 m/s) and regular disinfection practices. While there is a critical need for strengthening hospital discharge standards in preventing re-emergence of COVID-19 spread, use of breath sample as a supplement specimen could further guard the hospital discharge to ensure the safety of the public and minimize the pandemic re-emergence risk.

6.
Environ Sci Technol ; 55(13): 8987-8999, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1270649

ABSTRACT

The highly infectious SARS-CoV-2 novel coronavirus has resulted in a global pandemic. More than a hundred million people are already impacted, with infected numbers expected to go up. Coughing, sneezing, and even talking emit respiratory droplets which can carry infectious viruses. It is important to understand how the exhaled particles move through air to an exposed person to better predict the airborne transmission impacts of SARS-CoV-2. There are many studies conducted on the airborne spread of viruses causing diseases such as SARS and measles; however, there are very limited studies that couple the transport characteristics with the aerosol dynamics of the droplets. In this study, a comprehensive model for simultaneous droplet evaporation and transport due to diffusion, convection, and gravitational settling is developed to determine the near spatial and temporal concentration of the viable virus exhaled by the infected individual. The exposure to the viable virus is estimated by calculating the respiratory deposition, and the risk of infection is determined using a dose-response model. The developed model is used to quantify the risk of short-range airborne transmission of SARS-CoV-2 from inhalation of virus-laden droplets when an infected individual is directly in front of the person exposed and the surrounding air is stagnant. The effect of different parameters, such as viral load, infectivity factor, emission sources, physical separation, exposure time, ambient air velocity, dilution, and mask usage, is determined on the risk of exposure.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Cough , Exhalation , Humans
7.
Clin Infect Dis ; 72(10): e652-e654, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232192

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients exhaled millions of severe acute respiratory syndrome coronavirus 2 RNA copies per hour, which plays an important role in COVID-19 transmission. Exhaled breath had a higher positive rate (26.9%, n = 52) than surface (5.4%, n = 242) and air (3.8%, n = 26) samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Respiratory System
SELECTION OF CITATIONS
SEARCH DETAIL