Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331619

ABSTRACT

Background: Characterization studies of COVID-19 patients with chronic obstructive pulmonary disease (COPD) are limited in size and scope. The aim of the study is to provide a large-scale characterization of COVID-19 patients with COPD. Methods: We included thirteen databases contributing data from January-June 2020 from North America (US), Europe and Asia. We defined two cohorts of patients with COVID-19 namely a ‘diagnosed’ and ‘hospitalized’ cohort. We followed patients from COVID-19 index date to 30 days or death. We performed descriptive analysis and reported the frequency of characteristics and outcomes among COPD patients with COVID-19. Results: The study included 934,778 patients in the diagnosed COVID-19 cohort and 177,201 in the hospitalized COVID-19 cohort. Observed COPD prevalence in the diagnosed cohort ranged from 3.8% (95%CI 3.5-4.1%) in French data to 22.7% (95%CI 22.4-23.0) in US data, and from 1.9% (95%CI 1.6-2.2) in South Korean to 44.0% (95%CI 43.1-45.0) in US data, in the hospitalized cohorts. COPD patients in the hospitalized cohort had greater comorbidity than those in the diagnosed cohort, including hypertension, heart disease, diabetes and obesity. Mortality was higher in COPD patients in the hospitalized cohort and ranged from 7.6% (95%CI 6.9-8.4) to 32.2% (95%CI 28.0-36.7) across databases. ARDS, acute renal failure, cardiac arrhythmia and sepsis were the most common outcomes among hospitalized COPD patients.   Conclusion: COPD patients with COVID-19 have high levels of COVID-19-associated comorbidities and poor COVID-19 outcomes. Further research is required to identify patients with COPD at high risk of worse outcomes.

2.
Clin Epidemiol ; 14: 369-384, 2022.
Article in English | MEDLINE | ID: covidwho-1760056

ABSTRACT

Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD. Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services. Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms, medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized cohorts than diagnosed. Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine surveillance.

3.
BMJ Open ; 11(12): e057632, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1583090

ABSTRACT

OBJECTIVE: To characterise patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients. DESIGN AND SETTING: This is a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data) from the USA, Europe and South Korea, standardised to the Observational Medical Outcomes Partnership common data model. Data were gathered from 1 March to 31 October 2020. PARTICIPANTS: Two non-mutually exclusive cohorts were defined: (1) individuals diagnosed with COVID-19 (diagnosed cohort) and (2) individuals hospitalised with COVID-19 (hospitalised cohort), and stratified by hypertension status. Follow-up was from COVID-19 diagnosis/hospitalisation to death, end of the study period or 30 days. OUTCOMES: Demographics, comorbidities and 30-day outcomes (hospitalisation and death for the 'diagnosed' cohort and adverse events and death for the 'hospitalised' cohort) were reported. RESULTS: We identified 2 851 035 diagnosed and 563 708 hospitalised patients with COVID-19. Hypertension was more prevalent in the latter (ranging across databases from 17.4% (95% CI 17.2 to 17.6) to 61.4% (95% CI 61.0 to 61.8) and from 25.6% (95% CI 24.6 to 26.6) to 85.9% (95% CI 85.2 to 86.6)). Patients in both cohorts with hypertension were predominantly >50 years old and female. Patients with hypertension were frequently diagnosed with obesity, heart disease, dyslipidaemia and diabetes. Compared with patients without hypertension, patients with hypertension in the COVID-19 diagnosed cohort had more hospitalisations (ranging from 1.3% (95% CI 0.4 to 2.2) to 41.1% (95% CI 39.5 to 42.7) vs from 1.4% (95% CI 0.9 to 1.9) to 15.9% (95% CI 14.9 to 16.9)) and increased mortality (ranging from 0.3% (95% CI 0.1 to 0.5) to 18.5% (95% CI 15.7 to 21.3) vs from 0.2% (95% CI 0.2 to 0.2) to 11.8% (95% CI 10.8 to 12.8)). Patients in the COVID-19 hospitalised cohort with hypertension were more likely to have acute respiratory distress syndrome (ranging from 0.1% (95% CI 0.0 to 0.2) to 65.6% (95% CI 62.5 to 68.7) vs from 0.1% (95% CI 0.0 to 0.2) to 54.7% (95% CI 50.5 to 58.9)), arrhythmia (ranging from 0.5% (95% CI 0.3 to 0.7) to 45.8% (95% CI 42.6 to 49.0) vs from 0.4% (95% CI 0.3 to 0.5) to 36.8% (95% CI 32.7 to 40.9)) and increased mortality (ranging from 1.8% (95% CI 0.4 to 3.2) to 25.1% (95% CI 23.0 to 27.2) vs from 0.7% (95% CI 0.5 to 0.9) to 10.9% (95% CI 10.4 to 11.4)) than patients without hypertension. CONCLUSIONS: COVID-19 patients with hypertension were more likely to suffer severe outcomes, hospitalisations and deaths compared with those without hypertension.


Subject(s)
COVID-19 , Hypertension , COVID-19 Testing , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Hypertension/epidemiology , Middle Aged , Retrospective Studies , SARS-CoV-2
4.
Applied Sciences ; 11(24):11920, 2021.
Article in English | MDPI | ID: covidwho-1572354

ABSTRACT

Federated networks of observational health databases have the potential to be a rich resource to inform clinical practice and regulatory decision making. However, the lack of standard data quality processes makes it difficult to know if these data are research ready. The EHDEN COVID-19 Rapid Collaboration Call presented the opportunity to assess how the newly developed open-source tool Data Quality Dashboard (DQD) informs the quality of data in a federated network. Fifteen Data Partners (DPs) from 10 different countries worked with the EHDEN taskforce to map their data to the OMOP CDM. Throughout the process at least two DQD results were collected and compared for each DP. All DPs showed an improvement in their data quality between the first and last run of the DQD. The DQD excelled at helping DPs identify and fix conformance issues but showed less of an impact on completeness and plausibility checks. This is the first study to apply the DQD on multiple, disparate databases across a network. While study-specific checks should still be run, we recommend that all data holders converting their data to the OMOP CDM use the DQD as it ensures conformance to the model specifications and that a database meets a baseline level of completeness and plausibility for use in research.

5.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295136

ABSTRACT

Background and Objective As a response to the ongoing COVID-19 pandemic, several prediction models have been rapidly developed, with the aim of providing evidence-based guidance. However, no COVID-19 prediction model in the existing literature has been found to be reliable. Models are commonly assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences and Informatics (OHDSI) analytics pipeline for patient-level prediction as a standardized approach for rapid yet reliable development and validation of prediction models. We demonstrate how our analytics pipeline and open-source software can be used to answer important prediction questions while limiting potential causes of bias (e.g., by validating phenotypes, specifying the target population, performing large-scale external validation and publicly providing all analytical source code). Methods We show step-by-step how to implement the pipeline for the question: ‘In patients hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization’. We develop models using six different machine learning methods in a US claims database containing over 20,000 COVID-19 hospitalizations and externally validate the models using data containing over 45,000 COVID-19 hospitalizations from South Korea, Spain, and the US. Results Our open-source tools enabled us to efficiently go end-to-end from problem design to reliable model development and evaluation. When predicting death in patients hospitalized for COVID-19 adaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic regression models were well calibrated. Conclusion Our results show that following the OHDSI analytics pipeline for patient-level prediction can enable the rapid development towards reliable prediction models. The OHDSI tools and pipeline are open source and available to researchers around the world.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292868

ABSTRACT

Background: Few datasets have been established that capture the full breadth of COVID-19 patient interactions with a health system. Our first objective was to create a COVID-19 dataset that linked primary care data to COVID-19 testing, hospitalisation, and mortality data at a patient level. Our second objective was to provide a descriptive analysis of COVID-19 outcomes among the general population and describe the characteristics of the affected individuals. Methods We mapped patient-level data from Catalonia, Spain, to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). More than 3,000 data quality checks were performed to assess the readiness of the database for research. Subsequently, to summarise the COVID-19 population captured, we established a general population cohort as of the 1st March 2020 and identified outpatient COVID-19 diagnoses or positive test results for SARS-CoV-2, hospitalisations with COVID-19, and COVID-19 deaths during follow-up, which went up until 30th June 2021. Findings Mapping data to the OMOP CDM was performed and high data quality was observed. The mapped database was used to identify a total of 5,870,274 individuals, who were included in the general population cohort as of 1st March 2020. Over follow up, 604,472 had either an outpatient COVID-19 diagnosis or positive test result, 58,991 had a hospitalisation with COVID-19, 5,642 had an ICU admission with COVID-19, and 11,233 had a COVID-19 death. People who were hospitalised or died were more commonly older, male, and with more comorbidities. Those admitted to ICU with COVID-19 were generally younger and more often male than those hospitalised in general and those who died. Interpretation We have established a comprehensive dataset that captures COVID-19 diagnoses, test results, hospitalisations, and deaths in Catalonia, Spain. Extensive data checks have shown the data to be fit for use. From this dataset, a general population cohort of 5.9 million individuals was identified and their COVID-19 outcomes over time were described. Funding Generalitat de Catalunya and European Health Data and Evidence Network (EHDEN).

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292206

ABSTRACT

Background: Observational health data has the potential to be a rich resource to inform clinical practice and regulatory decision making. However, the lack of standard data quality processes makes it difficult to know if these data are research ready. The EHDEN COVID-19 Rapid Col-laboration Call presented the opportunity to assess how the newly developed open-source tool Data Quality Dashboard (DQD) informs the quality of data in a federated network. Methods: 15 Data Partners (DPs) from 10 different countries worked with the EHDEN taskforce to map their data to the OMOP CDM. Throughout the process at least two DQD results were collected and compared for each DP. Results: All DPs showed an improvement in their data quality between the first and last run of the DQD. The DQD excelled at helping DPs identify and fix conformance is-sues but showed less of an impact on completeness and plausibility checks. Conclusions: This is the first study to apply the DQD on multiple, disparate databases across a network. While study-specific checks should still be run, we recommend that all data holders converting their data to the OMOP CDM use the DQD as it ensures conformance to the model specifications and that a database meets a baseline level of completeness and plausibility for use in research.

8.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1450633

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
9.
Comput Methods Programs Biomed ; 211: 106394, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1437413

ABSTRACT

BACKGROUND AND OBJECTIVE: As a response to the ongoing COVID-19 pandemic, several prediction models in the existing literature were rapidly developed, with the aim of providing evidence-based guidance. However, none of these COVID-19 prediction models have been found to be reliable. Models are commonly assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences and Informatics (OHDSI) analytics pipeline for patient-level prediction modeling as a standardized approach for rapid yet reliable development and validation of prediction models. We demonstrate how our analytics pipeline and open-source software tools can be used to answer important prediction questions while limiting potential causes of bias (e.g., by validating phenotypes, specifying the target population, performing large-scale external validation, and publicly providing all analytical source code). METHODS: We show step-by-step how to implement the analytics pipeline for the question: 'In patients hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization?'. We develop models using six different machine learning methods in a USA claims database containing over 20,000 COVID-19 hospitalizations and externally validate the models using data containing over 45,000 COVID-19 hospitalizations from South Korea, Spain, and the USA. RESULTS: Our open-source software tools enabled us to efficiently go end-to-end from problem design to reliable Model Development and evaluation. When predicting death in patients hospitalized with COVID-19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic regression models were well calibrated. CONCLUSION: Our results show that following the OHDSI analytics pipeline for patient-level prediction modelling can enable the rapid development towards reliable prediction models. The OHDSI software tools and pipeline are open source and available to researchers from all around the world.


Subject(s)
COVID-19 , Pandemics , Humans , Logistic Models , Machine Learning , SARS-CoV-2
10.
Pediatrics ; 148(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1394618

ABSTRACT

OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.


Subject(s)
COVID-19 , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Comorbidity , Databases, Factual , Diagnosis, Differential , Female , France/epidemiology , Germany/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Male , Republic of Korea/epidemiology , Spain/epidemiology , Symptom Assessment , Time Factors , Treatment Outcome , United States/epidemiology
11.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1317085

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
12.
Rheumatology (Oxford) ; 60(SI): SI37-SI50, 2021 10 09.
Article in English | MEDLINE | ID: covidwho-1135892

ABSTRACT

OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid coronavirus disease 2019 (COVID-19), but information on their prognosis is lacking. We characterized 30-day outcomes and mortality after hospitalization with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. METHODS: A multinational network cohort study was conducted using electronic health records data from Columbia University Irving Medical Center [USA, Optum (USA), Department of Veterans Affairs (USA), Information System for Research in Primary Care-Hospitalization Linked Data (Spain) and claims data from IQVIA Open Claims (USA) and Health Insurance and Review Assessment (South Korea). All patients with prevalent autoimmune diseases, diagnosed and/or hospitalized between January and June 2020 with COVID-19, and similar patients hospitalized with influenza in 2017-18 were included. Outcomes were death and complications within 30 days of hospitalization. RESULTS: We studied 133 589 patients diagnosed and 48 418 hospitalized with COVID-19 with prevalent autoimmune diseases. Most patients were female, aged ≥50 years with previous comorbidities. The prevalence of hypertension (45.5-93.2%), chronic kidney disease (14.0-52.7%) and heart disease (29.0-83.8%) was higher in hospitalized vs diagnosed patients with COVID-19. Compared with 70 660 hospitalized with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2-4.3% vs 6.32-24.6%). CONCLUSION: Compared with influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality.


Subject(s)
Autoimmune Diseases/mortality , Autoimmune Diseases/virology , COVID-19/mortality , Hospitalization/statistics & numerical data , Influenza, Human/mortality , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Cohort Studies , Female , Humans , Influenza, Human/immunology , Male , Middle Aged , Prevalence , Prognosis , Republic of Korea/epidemiology , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
13.
medRxiv ; 2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-955711

ABSTRACT

OBJECTIVE: To estimate the proportion of patients hospitalized with COVID-19 who undergo dialysis, tracheostomy, and extracorporeal membrane oxygenation (ECMO). DESIGN: A network cohort study. SETTING: Seven databases from the United States containing routinely-collected patient data: HealthVerity, Premier, IQVIA Hospital CDM, IQVIA Open Claims, Optum EHR, Optum SES, and VA-OMOP. PATIENTS: Patients hospitalized with a clinical diagnosis or a positive test result for COVID-19. INTERVENTIONS: Dialysis, tracheostomy, and ECMO. MEASUREMENTS AND MAIN RESULTS: 842,928 patients hospitalized with COVID-19 were included (22,887 from HealthVerity, 77,853 from IQVIA Hospital CDM, 533,997 from IQVIA Open Claims, 36,717 from Optum EHR, 4,336 from OPTUM SES, 156,187 from Premier, and 10,951 from VA-OMOP). Across the six databases, 35,192 (4.17% [95% CI: 4.13% to 4.22%]) patients received dialysis, 6,950 (0.82% [0.81% to 0.84%]) had a tracheostomy, and 1,568 (0.19% [95% CI: 0.18% to 0.20%]) patients underwent ECMO over the 30 days following hospitalization. Use of ECMO was more common among patients who were younger, male, and with fewer comorbidities. Tracheostomy was broadly used for a similar proportion of patients regardless of age, sex, or comorbidity. While dialysis was generally used for a similar proportion among younger and older patients, it was more frequent among male patients and among those with chronic kidney disease. CONCLUSION: Use of dialysis among those hospitalized with COVID-19 is high at around 4%. Although less than one percent of patients undergo tracheostomy and ECMO, the absolute numbers of patients who have undergone these interventions is substantial.

14.
medRxiv ; 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-955714

ABSTRACT

OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid COVID-19, but information on their prognosis is lacking. We characterised 30-day outcomes and mortality after hospitalisation with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. DESIGN: Multinational network cohort study. SETTING: Electronic health records data from Columbia University Irving Medical Center (CUIMC) (NYC, United States [US]), Optum [US], Department of Veterans Affairs (VA) (US), Information System for Research in Primary Care-Hospitalisation Linked Data (SIDIAP-H) (Spain), and claims data from IQVIA Open Claims (US) and Health Insurance and Review Assessment (HIRA) (South Korea). PARTICIPANTS: All patients with prevalent autoimmune diseases, diagnosed and/or hospitalised between January and June 2020 with COVID-19, and similar patients hospitalised with influenza in 2017-2018 were included. MAIN OUTCOME MEASURES: 30-day complications during hospitalisation and death. RESULTS: We studied 133,589 patients diagnosed and 48,418 hospitalised with COVID-19 with prevalent autoimmune diseases. The majority of participants were female (60.5% to 65.9%) and aged ≥50 years. The most prevalent autoimmune conditions were psoriasis (3.5 to 32.5%), rheumatoid arthritis (3.9 to 18.9%), and vasculitis (3.3 to 17.6%). Amongst hospitalised patients, Type 1 diabetes was the most common autoimmune condition (4.8% to 7.5%) in US databases, rheumatoid arthritis in HIRA (18.9%), and psoriasis in SIDIAP-H (26.4%).Compared to 70,660 hospitalised with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2% to 4.3% versus 6.3% to 24.6%). CONCLUSIONS: Patients with autoimmune diseases had high rates of respiratory complications and 30-day mortality following a hospitalization with COVID-19. Compared to influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality. Future studies should investigate predictors of poor outcomes in COVID-19 patients with autoimmune diseases. WHAT IS ALREADY KNOWN ABOUT THIS TOPIC: Patients with autoimmune conditions may be at increased risk of COVID-19 infection andcomplications.There is a paucity of evidence characterising the outcomes of hospitalised COVID-19 patients with prevalent autoimmune conditions. WHAT THIS STUDY ADDS: Most people with autoimmune diseases who required hospitalisation for COVID-19 were women, aged 50 years or older, and had substantial previous comorbidities.Patients who were hospitalised with COVID-19 and had prevalent autoimmune diseases had higher prevalence of hypertension, chronic kidney disease, heart disease, and Type 2 diabetes as compared to those with prevalent autoimmune diseases who were diagnosed with COVID-19.A variable proportion of 6% to 25% across data sources died within one month of hospitalisation with COVID-19 and prevalent autoimmune diseases.For people with autoimmune diseases, COVID-19 hospitalisation was associated with worse outcomes and 30-day mortality compared to admission with influenza in the 2017-2018 season.

15.
medRxiv ; 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-915986

ABSTRACT

Objectives To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19. Secondly, to describe health outcomes amongst children/adolescents diagnosed with previous seasonal influenza. Design International network cohort. Setting Real-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. Participants Diagnosed and/or hospitalized children/adolescents with COVID-19 at age <18 between January and June 2020; diagnosed with influenza in 2017-2018. Main outcome measures Baseline demographics and comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death. Results A total of 55,270 children/adolescents diagnosed and 3,693 hospitalized with COVID-19 and 1,952,693 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were all more common among those hospitalized vs diagnosed with COVID-19. The most common COVID-19 symptom was fever. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8% to 37.6%), famotidine (9.0% to 28.1%), and antithrombotics such as aspirin (2.0% to 21.4%), heparin (2.2% to 18.1%), and enoxaparin (2.8% to 14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia, ARDS, and MIS-C were more frequent in COVID-19 than influenza. Conclusions Despite negligible fatality, complications including pneumonia, ARDS and MIS-C were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19.

16.
medRxiv ; 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-915971

ABSTRACT

Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems' response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.

17.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-719257

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
SELECTION OF CITATIONS
SEARCH DETAIL