Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Pharm ; 19(6): 1892-1905, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1860276

ABSTRACT

Lipid nanoparticles (LNPs) are the leading technology for RNA delivery, given the success of the Pfizer/BioNTech and Moderna COVID-19 mRNA (mRNA) vaccines, and small interfering RNA (siRNA) therapies (patisiran). However, optimization of LNP process parameters and compositions for larger RNA payloads such as self-amplifying RNA (saRNA), which can have complex secondary structures, have not been carried out. Furthermore, the interactions between process parameters, critical quality attributes (CQAs), and function, such as protein expression and cellular activation, are not well understood. Here, we used two iterations of design of experiments (DoE) (definitive screening design and Box-Behnken design) to optimize saRNA formulations using the leading, FDA-approved ionizable lipids (MC3, ALC-0315, and SM-102). We observed that PEG is required to preserve the CQAs and that saRNA is more challenging to encapsulate and preserve than mRNA. We identified three formulations to minimize cellular activation, maximize cellular activation, or meet a CQA profile while maximizing protein expression. The significant parameters and design of the response surface modeling and multiple response optimization may be useful for designing formulations for a range of applications, such as vaccines or protein replacement therapies, for larger RNA cargoes.


Subject(s)
COVID-19 , Nanoparticles , Amino Alcohols , COVID-19/therapy , Caprylates , Decanoates , Humans , Liposomes , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Small Interfering
2.
Lancet ; 399(10332): 1281-1282, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1768610
3.
Mol Pharm ; 19(4): 1047-1058, 2022 04 04.
Article in English | MEDLINE | ID: covidwho-1721386

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic launched an unprecedented global effort to rapidly develop vaccines to stem the spread of the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Messenger ribonucleic acid (mRNA) vaccines were developed quickly by companies that were actively developing mRNA therapeutics and vaccines for other indications, leading to two mRNA vaccines being not only the first SARS-CoV-2 vaccines to be approved for emergency use but also the first mRNA drugs to gain emergency use authorization and to eventually gain full approval. This was possible partly because mRNA sequences can be altered to encode nearly any protein without significantly altering its chemical properties, allowing the drug substance to be a modular component of the drug product. Lipid nanoparticle (LNP) technology required to protect the ribonucleic acid (RNA) and mediate delivery into the cytoplasm of cells is likewise modular, as are technologies and infrastructure required to encapsulate the RNA into the LNP. This enabled the rapid adaptation of the technology to a new target. Upon the coattails of the clinical success of mRNA vaccines, this modularity will pave the way for future RNA medicines for cancer, gene therapy, and RNA engineered cell therapies. In this review, trends in the publication records and clinical trial registrations are tallied to show the sharp intensification in preclinical and clinical research for RNA medicines. Demand for the manufacturing of both the RNA drug substance (DS) and the LNP drug product (DP) has already been strained, causing shortages of the vaccine, and the rise in development and translation of other mRNA drugs in the coming years will exacerbate this strain. To estimate demand for DP manufacturing, the dosing requirements for the preclinical and clinical studies of the two approved mRNA vaccines were examined. To understand the current state of mRNA-LNP production, current methods and technologies are reviewed, as are current and announced global capacities for commercial manufacturing. Finally, a vision is rationalized for how emerging technologies such as self-amplifying mRNA, microfluidic production, and trends toward integrated and distributed manufacturing will shape the future of RNA manufacturing and unlock the potential for an RNA medicine revolution.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Liposomes , Nanoparticles , RNA, Messenger/metabolism , SARS-CoV-2/genetics
4.
J Control Release ; 338: 201-210, 2021 10 10.
Article in English | MEDLINE | ID: covidwho-1364213

ABSTRACT

Self-amplifying RNA (saRNA) is a next-generation vaccine platform, but like all nucleic acids, requires a delivery vehicle to promote cellular uptake and protect the saRNA from degradation. To date, delivery platforms for saRNA have included lipid nanoparticles (LNP), polyplexes and cationic nanoemulsions; of these LNP are the most clinically advanced with the recent FDA approval of COVID-19 based-modified mRNA vaccines. While the effect of RNA on vaccine immunogenicity is well studied, the role of biomaterials in saRNA vaccine effectiveness is under investigated. Here, we tested saRNA formulated with either pABOL, a bioreducible polymer, or LNP, and characterized the protein expression and vaccine immunogenicity of both platforms. We observed that pABOL-formulated saRNA resulted in a higher magnitude of protein expression, but that the LNP formulations were overall more immunogenic. Furthermore, we observed that both the helper phospholipid and route of administration (intramuscular versus intranasal) of LNP impacted the vaccine immunogenicity of two model antigens (influenza hemagglutinin and SARS-CoV-2 spike protein). We observed that LNP administered intramuscularly, but not pABOL or LNP administered intranasally, resulted in increased acute interleukin-6 expression after vaccination. Overall, these results indicate that delivery systems and routes of administration may fulfill different delivery niches within the field of saRNA genetic medicines.


Subject(s)
COVID-19 , Influenza Vaccines , Nanoparticles , Humans , Lipids , Polymers , RNA , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Nat Commun ; 12(1): 2893, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232068

ABSTRACT

Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , RNA, Viral/administration & dosage , SARS-CoV-2/immunology , Vaccination/methods , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Mice , RNA, Viral/genetics , RNA, Viral/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
6.
Mol Ther ; 29(3): 1174-1185, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-985497

ABSTRACT

Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition of translation. In this study, we screened a library of saRNA constructs with cis-encoded innate inhibiting proteins (IIPs) and determined the effect on protein expression and immunogenicity. We observed that the PIV-5 V and Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a proteins enhance protein expression 100- to 500-fold in vitro in IFN-competent HeLa and MRC5 cells. We found that the MERS-CoV ORF4a protein partially abates dose nonlinearity in vivo, and that ruxolitinib, a potent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor, but not the IIPs, enhances protein expression of saRNA in vivo. Both the PIV-5 V and MERS-CoV ORF4a proteins were found to enhance the percentage of resident cells in human skin explants expressing saRNA and completely rescued dose nonlinearity of saRNA. Finally, we observed that the MERS-CoV ORF4a increased the rabies virus (RABV)-specific immunoglobulin G (IgG) titer and neutralization half-maximal inhibitory concentration (IC50) by ∼10-fold in rabbits, but not in mice or rats. These experiments provide a proof of concept that IIPs can be directly encoded into saRNA vectors and effectively abate the nonlinear dose dependency and enhance immunogenicity.


Subject(s)
Immunity, Innate/drug effects , Immunogenicity, Vaccine , Protein Biosynthesis/drug effects , Vaccines, Synthetic/pharmacology , Viral Envelope Proteins/administration & dosage , Animals , Cell Line , Encephalitis Virus, Venezuelan Equine/drug effects , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Venezuelan Equine/pathogenicity , Fibroblasts , Gene Expression Regulation , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/biosynthesis , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/immunology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , NF-kappa B/genetics , NF-kappa B/immunology , Nitriles , Parainfluenza Virus 5/drug effects , Parainfluenza Virus 5/immunology , Parainfluenza Virus 5/pathogenicity , Pyrazoles/pharmacology , Pyrimidines , Rabbits , Rabies virus/drug effects , Rabies virus/immunology , Rabies virus/pathogenicity , Rats , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction , Vaccines, Synthetic/biosynthesis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
7.
Lancet ; 397(10275): 643-645, 2021 02 20.
Article in English | MEDLINE | ID: covidwho-1124281
8.
Polymer Chemistry ; 11(36):5861-5869, 2020.
Article | Web of Science | ID: covidwho-834919

ABSTRACT

Cationic polymers are widely used as materials to condense nucleic acids for gene-based therapies. These have been developed to mainly deliver DNA and RNA for cancer therapies but the ongoing COVID-19 pandemic has demonstrated an urgent need for new DNA and RNA vaccines. Given this, suitable manufacturing conditions for such cationic polymers which can protect the nucleic acid in the formulation and delivery stages but release the cargo in the correct cellular compartment effectively and safely are required. A number of polymers based on poly(amidoamine)s fit these criteria but their syntheses can be time-consuming, inefficient and poorly reproducible, precluding their adoption as manufacturable vaccine excipients. Here we report an improved synthesis of poly(cystamine bisacrylamide-co-4-amino-1-butanol), abbreviated as pABOL,viamodifications in concentration, reaction time and reaction conditions. Optimisation of monomer contents and stoichiometries, solvents, diluents and temperature, combined with the application of microwaves, enabled the preparation of vaccine candidate pABOL materials in 4 h compared to 48 h reported for previous syntheses. These procedures were highly reproducible in multiple repeat syntheses. Transfection experiments with a model RNA showed that polymers of formulation with appropriate molar masses and mass distributions were as effective in model cell lines as polymers derived from the unoptimised syntheses which have been shown to have high efficacy as RNA vaccine formulation candidates.

9.
Nat Commun ; 11(1): 3523, 2020 07 09.
Article in English | MEDLINE | ID: covidwho-640262

ABSTRACT

The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibody-dependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN-γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Nanoparticles/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/metabolism , Antibody-Dependent Enhancement/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/immunology , Disease Models, Animal , Humans , Immunity, Cellular , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , RNA, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , Viral Vaccines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL