Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
J Allergy Clin Immunol ; 150(4): 796-805, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991092


BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may result in a severe pneumonia associated with elevation of blood inflammatory parameters, reminiscent of cytokine storm syndrome. Steroidal anti-inflammatory therapies have shown efficacy in reducing mortality in critically ill patients; however, the mechanisms by which SARS-CoV-2 triggers such an extensive inflammation remain unexplained. OBJECTIVES: To dissect the mechanisms underlying SARS-CoV-2-associated inflammation in patients with severe coronavirus disease 2019 (COVID-19), we studied the role of IL-1ß, a pivotal cytokine driving inflammatory phenotypes, whose maturation and secretion are regulated by inflammasomes. METHODS: We analyzed nod-like receptor protein 3 pathway activation by means of confocal microscopy, plasma cytokine measurement, cytokine secretion following in vitro stimulation of blood circulating monocytes, and whole-blood RNA sequencing. The role of open reading frame 3a SARS-CoV-2 protein was assessed by confocal microscopy analysis following nucleofection of a monocytic cell line. RESULTS: We found that circulating monocytes from patients with COVID-19 display ASC (adaptor molecule apoptotic speck like protein-containing a CARD) specks that colocalize with nod-like receptor protein 3 inflammasome and spontaneously secrete IL-1ß in vitro. This spontaneous activation reverts following patient's treatment with the IL-1 receptor antagonist anakinra. Transfection of a monocytic cell line with cDNA coding for the ORF3a SARS-CoV-2 protein resulted in ASC speck formation. CONCLUSIONS: These results provide further evidence that IL-1ß targeting could represent an effective strategy in this disease and suggest a mechanistic explanation for the strong inflammatory manifestations associated with COVID-19.

COVID-19 , Inflammasomes , Anti-Inflammatory Agents , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , DNA, Complementary , Humans , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Receptors, Interleukin-1 , SARS-CoV-2