Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Influenza Other Respir Viruses ; 16(5): 937-941, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1973654


INTRODUCTION: The use of rapid molecular testing for influenza diagnosis is becoming increasingly popular. Used at the point of care or in a clinical laboratory, these tests detect influenza A and B viruses, though many do not distinguish between influenza A subtypes. The UK Severe Influenza Surveillance System (USISS) collects surveillance data on laboratory-confirmed influenza admissions to secondary care in England. This study set out to understand how rapid influenza molecular testing was being used and how it might influence the availability of subtyping data collected on influenza cases admitted to secondary care in England. METHODS: At the end of the 2017/2018 and 2018/2019 influenza seasons, a questionnaire was sent to all National Health Service Hospital Trusts in England to evaluate the use of rapid influenza testing. Surveillance data collected through USISS was analysed from 2011/2012 to 2020/2021. RESULTS: Of responding trusts, 42% (13/31) in 2017/2018 and 55% (9/17) in 2018/2019 used rapid influenza molecular tests, either alone or in combination with other testing. The majority of rapid tests used did not subtype the influenza A result, and limited follow-up testing occurred. Surveillance data showed significant proportions of influenza A hospital and intensive care unit/high dependency unit admissions without subtyping information, increasing by approximately 35% between 2012/2013 and 2020/2021. CONCLUSIONS: The use of rapid influenza molecular tests is a likely contributing factor to the large proportion of influenza A hospitalisations in England that were unsubtyped. Given their clear clinical advantages, further work must be done to reinforce these data for public health through integrated genomic surveillance.

Influenza, Human , England/epidemiology , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Molecular Diagnostic Techniques , Seasons , Secondary Care , State Medicine
Influenza Other Respir Viruses ; 16(5): 897-905, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1973646


INTRODUCTION: In 2013, the United Kingdom began to roll-out a universal annual influenza vaccination program for children. An important component of any new vaccination program is measuring its effectiveness. Live-attenuated influenza vaccines (LAIVs) have since shown mixed results with vaccine effectiveness (VE) varying across seasons and countries elsewhere. This study aims to assess the effectiveness of influenza vaccination in children against severe disease during the first three seasons of the LAIV program in England. METHODS: Using the screening method, LAIV vaccination coverage in children hospitalized with laboratory-confirmed influenza infection was compared with vaccination coverage in 2-6-year-olds in the general population to estimate VE in 2013/14-2015/16. RESULTS: The overall LAIV VE, adjusted for age group, week/month and geographical area, for all influenza types pooled over the three influenza seasons was 50.1% (95% confidence interval [CI] 31.2, 63.8). By age, there was evidence of protection against hospitalization from influenza vaccination in both the pre-school (2-4-year-olds) (48.1%, 95% CI 27.2, 63.1) and school-aged children (5-6-year-olds) (62.6%, 95% CI 2.6, 85.6) over the three seasons. CONCLUSION: LAIV vaccination in children provided moderate annual protection against laboratory-confirmed influenza-related hospitalization in England over the three influenza seasons. This study contributes further to the limited literature to date on influenza VE against severe disease in children.

Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Case-Control Studies , Child , Child, Preschool , England/epidemiology , Hospitalization , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination , Vaccine Efficacy , Vaccines, Attenuated
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: covidwho-1869325


BackgroundHouseholds appear to be the highest risk setting for COVID-19 transmission. Large household transmission studies in the early stages of the pandemic in Asia reported secondary attack rates ranging from 5 to 30%.AimWe aimed to investigate the transmission dynamics of COVID-19 in household and community settings in the UK.MethodsA prospective case-ascertained study design based on the World Health Organization FFX protocol was undertaken in the UK following the detection of the first case in late January 2020. Household contacts of cases were followed using enhanced surveillance forms to establish whether they developed symptoms of COVID-19, became confirmed cases and their outcomes. We estimated household secondary attack rates (SAR), serial intervals and individual and household basic reproduction numbers. The incubation period was estimated using known point source exposures that resulted in secondary cases.ResultsWe included 233 households with two or more people with 472 contacts. The overall household SAR was 37% (95% CI: 31-43%) with a mean serial interval of 4.67 days, an R0 of 1.85 and a household reproduction number of 2.33. SAR were lower in larger households and highest when the primary case was younger than 18 years. We estimated a mean incubation period of around 4.5 days.ConclusionsRates of COVID-19 household transmission were high in the UK for ages above and under 18 years, emphasising the need for preventative measures in this setting. This study highlights the importance of the FFX protocol in providing early insights on transmission dynamics.

COVID-19 , Adolescent , Family Characteristics , Humans , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology