ABSTRACT
BACKGROUND: COVID-19 has overwhelmed health services globally. Oral antiviral therapies are licensed worldwide, but indications and efficacy rates vary. We aimed to evaluate the safety and efficacy of oral favipiravir in patients hospitalised with COVID-19. METHODS: We conducted a multicentre, open-label, randomised controlled trial of oral favipiravir in adult patients who were newly admitted to hospital with proven or suspected COVID-19 across five sites in the UK (n=2), Brazil (n=2) and Mexico (n=1). Using a permuted block design, eligible and consenting participants were randomly assigned (1:1) to receive oral favipiravir (1800 mg twice daily for 1 day; 800 mg twice daily for 9 days) plus standard care, or standard care alone. All caregivers and patients were aware of allocation and those analysing data were aware of the treatment groups. The prespecified primary outcome was the time from randomisation to recovery, censored at 28 days, which was assessed using an intention-to-treat approach. Post-hoc analyses were used to assess the efficacy of favipiravir in patients aged younger than 60 years, and in patients aged 60 years and older. The trial was registered with clinicaltrials.gov, NCT04373733. FINDINGS: Between May 5, 2020 and May 26, 2021, we assessed 503 patients for eligibility, of whom 499 were randomly assigned to favipiravir and standard care (n=251) or standard care alone (n=248). There was no significant difference between those who received favipiravir and standard care, relative to those who received standard care alone in time to recovery in the overall study population (hazard ratio [HR] 1·06 [95% CI 0·89-1·27]; n=499; p=0·52). Post-hoc analyses showed a faster rate of recovery in patients younger than 60 years who received favipiravir and standard care versus those who had standard care alone (HR 1·35 [1·06-1·72]; n=247; p=0·01). 36 serious adverse events were observed in 27 (11%) of 251 patients administered favipiravir and standard care, and 33 events were observed in 27 (11%) of 248 patients receiving standard care alone, with infectious, respiratory, and cardiovascular events being the most numerous. There was no significant between-group difference in serious adverse events per patient (p=0·87). INTERPRETATION: Favipiravir does not improve clinical outcomes in all patients admitted to hospital with COVID-19, however, patients younger than 60 years might have a beneficial clinical response. The indiscriminate use of favipiravir globally should be cautioned, and further high-quality studies of antiviral agents, and their potential treatment combinations, are warranted in COVID-19. FUNDING: LifeArc and CW+.
Subject(s)
COVID-19 , Adult , Humans , Middle Aged , Aged , SARS-CoV-2 , Treatment Outcome , Pyrazines/therapeutic useABSTRACT
BACKGROUND: The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against COVID-19 in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover; data to the end of the placebo-controlled phase are reported. METHODS: Adults aged 18-84 years received two doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who seroconverted to immunoglobulin G (IgG) against the nucleocapsid protein and did not meet criteria for symptomatic COVID-19 were classified as having asymptomatic disease. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses. RESULTS: Of 15185 participants, 13989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5 months) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% CI: 73.3-88.8). Vaccine efficacy was 100% (17.9-100.0) against severe disease and 76.3% (57.4-86.8) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-protein-specific induction of interferon-γ secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups. CONCLUSIONS: A two-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6 months postvaccination. A gradual decrease of protection suggests that a booster dose may be indicated.
ABSTRACT
Background: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is well tolerated and immunogenic in SARS-CoV-2 seronegative and seropositive individuals aged 18-75. Methods: A phase 2a expanded safety and immunogenicity study of a saRNA SARS-CoV-2 vaccine candidate LNP-nCoVsaRNA, was conducted at participating centres in the UK between 10th August 2020 and 30th July 2021. Participants received 1 µg then 10 µg of LNP-nCoVsaRNA, â¼14 weeks apart. Solicited adverse events (AEs) were collected for one week post-each vaccine, and unsolicited AEs throughout. Binding and neutralisating anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, and SARS-CoV-2 pseudoneutralisation assay. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). Findings: 216 healthy individuals (median age 51 years) received 1.0 µg followed by 10.0 µg of the vaccine. 28/216 participants were either known to have previous SARS-CoV2 infection and/or were positive for anti-Spike (S) IgG at baseline. Reactogenicity was as expected based on the reactions following licensed COVID-19 vaccines, and there were no serious AEs related to vaccination. 80% of baseline SARS-CoV-2 naïve individuals (147/183) seroconverted two weeks post second immunization, irrespective of age (18-75); 56% (102/183) had detectable neutralising antibodies. Almost all (28/31) SARS-CoV-2 positive individuals had increased S IgG binding antibodies following their first 1.0 µg dose with a ≥0.5log10 increase in 71% (22/31). Interpretation: Encapsulated saRNA was well tolerated and immunogenic in adults aged 18-75 years. Seroconversion rates in antigen naïve were higher than those reported in our dose-ranging study. Further work is required to determine if this difference is related to a longer dosing interval (14 vs. 4 weeks) or dosing with 1.0 µg followed by 10.0 µg. Boosting of S IgG antibodies was observed with a single 1.0 µg injection in those with pre-existing immune responses. Funding: Grants and gifts from the Medical Research Council UKRI (MC_PC_19076), the National Institute for Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, and Restore the Earth.
ABSTRACT
The coronavirus disease 2019 (COVID-19) antiviral nirmatrelvir/ritonavir (Paxlovid) has been granted authorization or approval in several countries for the treatment of patients with mild to moderate COVID-19 at high risk of progression to severe disease and with no requirement for supplemental oxygen. Nirmatrelvir/ritonavir will be primarily administered outside the hospital setting as a 5-day course oral treatment. The ritonavir component boosts plasma concentrations of nirmatrelvir through the potent and rapid inhibition of the key drug-metabolizing enzyme cytochrome P450 (CYP) 3A4. Thus nirmatrelvir/ritonavir, even given as a short treatment course, has a high potential to cause harm from drug-drug interactions (DDIs) with other drugs metabolized through this pathway. Options for mitigating risk from DDIs with nirmatrelvir/ritonavir are limited due to the clinical illness, the short window for intervention, and the related difficulty of implementing clinical monitoring or dosage adjustment of the comedication. Pragmatic options are largely confined to preemptive or symptom-driven pausing of the comedication or managing any additional risk through counseling. This review summarizes the effects of ritonavir on drug disposition (i.e., metabolizing enzymes and transporters) and discusses factors determining the likelihood of having a clinically significant DDI. Furthermore, it provides a comprehensive list of comedications likely to be used in COVID-19 patients which are categorized according to their potential DDI risk with nirmatrelvir/ritonavir. It also discusses recommendations for the management of DDIs which balance the risk of harm from DDIs with a short course of ritonavir, against unnecessary denial of nirmatrelvir/ritonavir treatment.
Subject(s)
COVID-19 Drug Treatment , Ritonavir , Humans , Antiviral Agents/adverse effects , Drug InteractionsSubject(s)
COVID-19 , Ritonavir , Drug Interactions , Humans , Ritonavir/therapeutic use , SARS-CoV-2ABSTRACT
BACKGROUND: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is a novel technology formulated as a low dose vaccine against COVID-19. METHODS: A phase I first-in-human dose-ranging trial of a saRNA COVID-19 vaccine candidate LNP-nCoVsaRNA, was conducted at Imperial Clinical Research Facility, and participating centres in London, UK, between 19th June to 28th October 2020. Participants received two intramuscular (IM) injections of LNP-nCoVsaRNA at six different dose levels, 0.1-10.0µg, given four weeks apart. An open-label dose escalation was followed by a dose evaluation. Solicited adverse events (AEs) were collected for one week from enrolment, with follow-up at regular intervals (1-8 weeks). The binding and neutralisation capacity of anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, immunoblot, SARS-CoV-2 pseudoneutralisation and wild type neutralisation assays. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). FINDINGS: 192 healthy individuals with no history or serological evidence of COVID-19, aged 18-45 years were enrolled. The vaccine was well tolerated with no serious adverse events related to vaccination. Seroconversion at week six whether measured by ELISA or immunoblot was related to dose (both p<0.001), ranging from 8% (3/39; 0.1µg) to 61% (14/23; 10.0µg) in ELISA and 46% (18/39; 0.3µg) to 87% (20/23; 5.0µg and 10.0µg) in a post-hoc immunoblot assay. Geometric mean (GM) anti-S IgG concentrations ranged from 74 (95% CI, 45-119) at 0.1µg to 1023 (468-2236) ng/mL at 5.0µg (p<0.001) and was not higher at 10.0µg. Neutralisation of SARS-CoV-2 by participant sera was measurable in 15% (6/39; 0.1µg) to 48% (11/23; 5.0µg) depending on dose level received. INTERPRETATION: Encapsulated saRNA is safe for clinical development, is immunogenic at low dose levels but failed to induce 100% seroconversion. Modifications to optimise humoral responses are required to realise its potential as an effective vaccine against SARS-CoV-2. FUNDING: This study was co-funded by grants and gifts from the Medical Research Council UKRI (MC_PC_19076), and the National Institute Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, Restore the Earth.
Subject(s)
COVID-19 , HIV Infections , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , SARS-CoV-2Subject(s)
COVID-19 , HIV Infections , HIV , HIV Infections/epidemiology , Humans , Morbidity , SARS-CoV-2ABSTRACT
BACKGROUND: Remdesivir is approved by the US Food and Drug Administration for the treatment of patients hospitalized with coronavirus disease 2019 (COVID-19) and has been shown to shorten time to recovery and improve clinical outcomes in randomized trials. METHODS: This was the final day 28 comparative analysis of data from a phase 3, randomized, open-label study comparing 2 remdesivir regimens (5 vs 10 days, combined for this analysis [remdesivir cohort]) and a real-world retrospective longitudinal cohort study of patients receiving standard-of-care treatment (nonremdesivir cohort). Eligible patients, aged ≥18 years, had confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxygen saturation ≤94% on room air or required supplemental oxygen, with pulmonary infiltrates. Propensity score matching (up to 1:10 ratio) was used to ensure comparable populations. We assessed day 14 clinical recovery (determined using a 7-point ordinal scale) and day 28 all-cause mortality (coprimary endpoints). RESULTS: A total of 368 (remdesivir) and 1399 (nonremdesivir) patients were included in the matched analysis. The day 14 clinical recovery rate was significantly higher among the remdesivir versus the nonremdesivir cohort (65.2% vs 57.1%; odds ratio [OR], 1.49; 95% confidence interval [CI], 1.16-1.90; Pâ =â 0.002). The day 28 mortality rate was significantly lower in the remdesivir cohort versus the nonremdesivir cohort (12.0% vs 16.2%; OR, 0.67; 95% CI, 0.47-.95; Pâ =â .03). CONCLUSIONS: Remdesivir was associated with significantly higher rates of day 14 clinical recovery, and lower day 28 mortality, compared with standard-of-care treatment in hospitalized patients with COVID-19. These data, taken together, support the use of remdesivir to improve clinical recovery and decrease mortality from SARS-CoV-2 infection.
ABSTRACT
BACKGROUND: Early clinical data from studies of the NVX-CoV2373 vaccine (Novavax), a recombinant nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that contains the full-length spike glycoprotein of the prototype strain plus Matrix-M adjuvant, showed that the vaccine was safe and associated with a robust immune response in healthy adult participants. Additional data were needed regarding the efficacy, immunogenicity, and safety of this vaccine in a larger population. METHODS: In this phase 3, randomized, observer-blinded, placebo-controlled trial conducted at 33 sites in the United Kingdom, we assigned adults between the ages of 18 and 84 years in a 1:1 ratio to receive two intramuscular 5-µg doses of NVX-CoV2373 or placebo administered 21 days apart. The primary efficacy end point was virologically confirmed mild, moderate, or severe SARS-CoV-2 infection with an onset at least 7 days after the second injection in participants who were serologically negative at baseline. RESULTS: A total of 15,187 participants underwent randomization, and 14,039 were included in the per-protocol efficacy population. Of the participants, 27.9% were 65 years of age or older, and 44.6% had coexisting illnesses. Infections were reported in 10 participants in the vaccine group and in 96 in the placebo group, with a symptom onset of at least 7 days after the second injection, for a vaccine efficacy of 89.7% (95% confidence interval [CI], 80.2 to 94.6). No hospitalizations or deaths were reported among the 10 cases in the vaccine group. Five cases of severe infection were reported, all of which were in the placebo group. A post hoc analysis showed an efficacy of 86.3% (95% CI, 71.3 to 93.5) against the B.1.1.7 (or alpha) variant and 96.4% (95% CI, 73.8 to 99.5) against non-B.1.1.7 variants. Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups. CONCLUSIONS: A two-dose regimen of the NVX-CoV2373 vaccine administered to adult participants conferred 89.7% protection against SARS-CoV-2 infection and showed high efficacy against the B.1.1.7 variant. (Funded by Novavax; EudraCT number, 2020-004123-16.).
Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Immunogenicity, Vaccine , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Humans , Injections, Intramuscular/adverse effects , Middle Aged , SARS-CoV-2 , Single-Blind Method , Vaccines, Synthetic/immunology , Young AdultABSTRACT
The urgent global public health need presented by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has brought scientists from diverse backgrounds together in an unprecedented international effort to rapidly identify interventions. There is a pressing need to apply clinical pharmacology principles and this has already been recognized by several other groups. However, one area that warrants additional specific consideration relates to plasma and tissue protein binding that broadly influences pharmacokinetics and pharmacodynamics. The principles of free drug theory have been forged and applied across drug development but are not currently being routinely applied for SARS-CoV-2 antiviral drugs. Consideration of protein binding is of critical importance to candidate selection but requires correct interpretation, in a drug-specific manner, to avoid either underinterpretation or overinterpretation of its consequences. This paper represents a consensus from international researchers seeking to apply historical knowledge, which has underpinned highly successful antiviral drug development for other viruses, such as HIV and hepatitis C virus for decades.
Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , COVID-19 , Drug Design , Drug Development , COVID-19/metabolism , Consensus , Humans , Protein Binding , SARS-CoV-2ABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug, has been shown to exhibit in vitro activity against SARS-CoV-2. The present study used physiologically based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS-CoV-2 EC90 . METHODS: A whole-body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500 and 4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. RESULTS: The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID and 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12 hours post dose was estimated. CONCLUSION: The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS-CoV-2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial.
Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/prevention & control , Drug Repositioning , Models, Biological , Nitro Compounds/administration & dosage , Thiazoles/administration & dosage , Adult , Antiviral Agents/blood , Antiviral Agents/pharmacokinetics , COVID-19/blood , Computer Simulation , Drug Dosage Calculations , Female , Humans , Lung/metabolism , Male , Middle Aged , Nitro Compounds/blood , Nitro Compounds/pharmacokinetics , Reproducibility of Results , Thiazoles/blood , Thiazoles/pharmacokinetics , Tissue Distribution , Young AdultABSTRACT
OBJECTIVE: To determine comorbidity indices in people with HIV (PWH) and lifestyle-similar HIV-negative controls. DESIGN: Cross-sectional analysis of the Pharmacokinetic and clinical Observations in PeoPle over fiftY cohort study in the United Kingdom and Ireland. METHODS: The Elixhauser Comorbidity Index (ECI), Charlson Comorbidity Index and the Comorbidity Burden Index were compared between older PWH and HIV-negative controls using the Mann-Whitney U test; the magnitude of the difference between groups was quantified using the r effect size. RESULTS: The 699 PWH and 304 HIV-negative controls were predominantly male (87.5% vs. 64.0%), white (86.3% vs. 90.0%) and had median ages of 57 and 58 years, respectively. Among PWH, the median (interquartile range) CD4 T-cell count was 624 (475, 811) cells/µl; 98.7% were on antiretroviral therapy. The median (interquartile range) ECI was 0 (0, 8) and 0 (-3, 1), Charlson Comorbidity Index was 2 (1, 5) and 1 (0, 1) and Comorbidity Burden Index 8.6 (2.2, 16.8) and 5.9 (0.6, 10.8), respectively. While all three indices were significantly higher in PWH than in controls (Pâ<â0.001 for each), the magnitude of the differences between the two groups were small to medium, with effect sizes (95% confidence interval) of 0.21 (0.16, 0.27), 0.38 (0.32, 0.42) and 0.18 (0.11, 0.23), respectively. CONCLUSION: These three comorbidity indices are higher in PWH compared with HIV-negative controls, although the magnitude of differences between groups were small. Differences in the ECI, reportedly associated with poorer coronavirus disease 2019 outcomes, were driven by more individuals with HIV being within the higher end of the range.