Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Crit Care ; 27(1): 226, 2023 06 08.
Article in English | MEDLINE | ID: covidwho-20232670

ABSTRACT

PURPOSE: A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. METHODS: This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. RESULTS: 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI - 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (- 1.17 ml/kg, 95% CI - 1.87 to - 0.44). CONCLUSIONS: IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23).


Subject(s)
COVID-19 , Pulmonary Edema , Respiratory Distress Syndrome , Humans , COVID-19/complications , Imatinib Mesylate/adverse effects , Lung , Double-Blind Method
2.
Eur Respir J ; 62(1)2023 Jul.
Article in English | MEDLINE | ID: covidwho-2300060

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Biomarkers , Inflammation , Cytokines , Aging
3.
Eur J Pharm Sci ; 184: 106418, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2291727

ABSTRACT

INTRODUCTION: In the randomized double-blind placebo-controlled CounterCOVID study, oral imatinib treatment conferred a positive clinical outcome and a signal for reduced mortality in COVID-19 patients. High concentrations of alpha-1 acid glycoprotein (AAG) were observed in these patients and were associated with increased total imatinib concentrations. AIMS: This post-hoc study aimed to compare the difference in exposure following oral imatinib administration in COVID-19 patients to cancer patients and assess assocations between pharmacokinetic (PK) parameters and pharmacodynamic (PD) outcomes of imatinib in COVID-19 patients. We hypothesize that a relatively higher drug exposure of imatinib in severe COVID-19 patients leads to improved pharmacodynamic outcome parameters. METHODS: 648 total concentration plasma samples obtained from 168 COVID-19 patients were compared to 475 samples of 105 cancer patients, using an AAG-binding model. Total trough concentration at steady state (Cttrough) and total average area under the concentration-time curve (AUCtave) were associated with ratio between partial oxygen pressure and fraction of inspired oxygen (P/F), WHO ordinal scale (WHO-score) and liberation of oxygen supplementation (O2lib). Linear regression, linear mixed effects models and time-to-event analysis were adjusted for possible confounders. RESULTS: AUCtave and Cttrough were respectively 2.21-fold (95%CI 2.07-2.37) and 1.53-fold (95%CI 1.44-1.63) lower for cancer compared to COVID-19 patients. Cttrough, not AUCtave, associated significantly with P/F (ß=-19,64; p-value=0.014) and O2lib (HR 0.78; p-value= 0.032), after adjusting for sex, age, neutrophil-lymphocyte ratio, dexamethasone concomitant treatment, AAG and baseline P/F-and WHO-score. Cttrough, but not AUCtave associated significantly with WHO-score. These results suggest an inverse relationship between PK-parameters, Cttrough and AUCtave, and PD outcomes. CONCLUSION: COVID-19 patients exhibit higher total imatinib exposure compared to cancer patients, attributed to differences in plasma protein concentrations. Higher imatinib exposure in COVID-19 patients did not associate with improved clinical outcomes. Cttrough and AUCtave inversely associated with some PD-outcomes, which may be biased by disease course, variability in metabolic rate and protein binding. Therefore, additional PKPD analyses into unbound imatinib and its main metabolite may better explain exposure-response.


Subject(s)
COVID-19 , Neoplasms , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Drug Repositioning , Neoplasms/drug therapy
4.
J Cardiovasc Pharmacol ; 80(6): 783-791, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2152204

ABSTRACT

ABSTRACT: Although previous studies support the clinical benefit of imatinib regarding respiratory status in hospitalized patients with COVID-19, potential cardiotoxicity may limit its clinical application. This study aimed to investigate the cardiac safety of imatinib in COVID-19. In the CounterCOVID study, 385 hospitalized hypoxemic patients with COVID-19 were randomly assigned to receive 10 days of oral imatinib or placebo in a 1:1 ratio. Patients with a corrected QT interval (QTc) >500 ms or left ventricular ejection fraction <40% were excluded. Severe cardiac adverse events were monitored for 28 days or until death occurred. Electrocardiogram measurements and cardiac biomarkers were assessed repeatedly during the first 10 days. A total of 36 severe cardiac events occurred, with a similar incidence in both treatment groups. No differences were observed in the computer-generated Bazett, manually interpreted Bazett, or Fridericia-interpreted QTcs. No clinically relevant alterations in other electrocardiogram parameters or plasma high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) concentrations were observed. Similar findings were observed in a subgroup of 72 patients admitted to the intensive care unit. In the univariate and multivariable linear mixed models, treatment with imatinib was not significantly associated with QT interval duration, hs-cTnT, or NT-proBNP levels. In conclusion, imatinib treatment did not result in more cardiac events, QT interval prolongation, or altered hs-cTnT or NT-proBNP levels. This suggests that treatment with imatinib is safe in hospitalized patients with COVID-19 with a QTc duration of less than 500 ms and left ventricular ejection fraction >40%.

5.
Arterioscler Thromb Vasc Biol ; 42(11): 1307-1320, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2053481

ABSTRACT

Increasing evidence indicates that inflammation promotes thrombosis via a VWF (von Willebrand factor)-mediated mechanism. VWF plays an essential role in maintaining the balance between blood coagulation and bleeding, and inflammation can lead to aberrant regulation. VWF is regulated on a transcriptional and (post-)translational level, and its secretion into the circulation captures platelets upon endothelial activation. The significant progress that has been made in understanding transcriptional and translational regulation of VWF is described in this review. First, we describe how VWF is regulated at the transcriptional and post-translational level with a specific focus on the influence of inflammatory and immune responses. Next, we describe how changes in regulation are linked with various cardiovascular diseases. Recent insights from clinical diseases provide evidence for direct molecular links between inflammation and thrombosis, including atherosclerosis, chronic thromboembolic pulmonary hypertension, and COVID-19. Finally, we will briefly describe clinical implications for antithrombotic treatment.


Subject(s)
COVID-19 , Thrombosis , von Willebrand Diseases , Humans , von Willebrand Factor/genetics , Fibrinolytic Agents/therapeutic use , Blood Platelets , Inflammation/genetics
6.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L431-L437, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2001934

ABSTRACT

For more than 2 years, COVID-19 has been holding the world at awe with new waves of infections, novel mutants, and still limited (albeit improved) means to combat SARS-CoV-2-induced respiratory failure, the most common and fatal presentation of severe COVID-19. In the present perspective, we draw from the successes and-mostly-failures in previous acute respiratory distress syndrome (ARDS) work and the experiences from COVID-19 to define conceptual barriers that have so far hindered therapeutic breakthroughs in this deadly disease, and to open up new avenues of thinking and thus, ultimately of therapy.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2
7.
Brain Commun ; 4(4): fcac195, 2022.
Article in English | MEDLINE | ID: covidwho-1985044

ABSTRACT

Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients.

9.
Respirology ; 26(9): 869-877, 2021 09.
Article in English | MEDLINE | ID: covidwho-1280373

ABSTRACT

BACKGROUND AND OBJECTIVE: Patients with coronavirus disease 2019 (COVID-19) pneumonia present with typical findings on chest computed tomography (CT), but the underlying histopathological patterns are unknown. Through direct regional correlation of imaging findings to histopathological patterns, this study aimed to explain typical COVID-19 CT patterns at tissue level. METHODS: Eight autopsy cases were prospectively selected of patients with PCR-proven COVID-19 pneumonia with varying clinical manifestations and causes of death. All had been subjected to chest CT imaging 24-72 h prior to death. Twenty-seven lung areas with typical COVID-19 patterns and two radiologically unaffected pulmonary areas were correlated to histopathological findings in the same lung regions. RESULTS: Two dominant radiological patterns were observed: ground-glass opacity (GGO) (n = 11) and consolidation (n = 16). In seven of 11 sampled areas of GGO, diffuse alveolar damage (DAD) was observed. In four areas of GGO, the histological pattern was vascular damage and thrombosis, with (n = 2) or without DAD (n = 2). DAD was also observed in five of 16 samples derived from areas of radiological consolidation. Seven areas of consolidation were based on a combination of DAD, vascular damage and thrombosis. In four areas of consolidation, bronchopneumonia was found. Unexpectedly, in samples from radiologically unaffected lung parenchyma, evidence was found of vascular damage and thrombosis. CONCLUSION: In COVID-19, radiological findings of GGO and consolidation are mostly explained by DAD or a combination of DAD and vascular damage plus thrombosis. However, the different typical CT patterns in COVID-19 are not related to specific histopathological patterns. Microvascular damage and thrombosis are even encountered in the radiologically normal lung.


Subject(s)
COVID-19 , Lung , Tomography, X-Ray Computed , Autopsy , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Retrospective Studies
10.
Front Immunol ; 12: 664209, 2021.
Article in English | MEDLINE | ID: covidwho-1247863

ABSTRACT

Rationale: Systemic activation of procoagulant and inflammatory mechanisms has been implicated in the pathogenesis of COVID-19. Knowledge of activation of these host response pathways in the lung compartment of COVID-19 patients is limited. Objectives: To evaluate local and systemic activation of coagulation and interconnected inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory distress syndrome. Methods: Paired bronchoalveolar lavage fluid and plasma samples were obtained from 17 patients with COVID-19 related persistent acute respiratory distress syndrome (mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five functional domains (coagulation, complement system, cytokines, chemokines and growth factors) were measured. Measurements and Main Results: In all patients, all functional domains were activated, especially in the bronchoalveolar compartment, with significantly increased levels of D-dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I, soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors. In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after start mechanical ventilation many bronchoalveolar and plasma host response biomarkers had declined. Conclusions: Critically ill, ventilated patients with COVID-19 show strong responses relating to coagulation, the complement system, cytokines, chemokines and growth factors in the bronchoalveolar compartment. These results suggest a local pulmonary rather than a systemic procoagulant and inflammatory "storm" in severe COVID-19.


Subject(s)
COVID-19/immunology , Critical Illness , Lung/metabolism , Respiratory Distress Syndrome/immunology , SARS-CoV-2/physiology , Thromboplastin/metabolism , Aged , Blood Coagulation , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Follow-Up Studies , Humans , Immunity, Innate , Lung/pathology , Male , Middle Aged , Respiration, Artificial
11.
EBioMedicine ; 67: 103378, 2021 May.
Article in English | MEDLINE | ID: covidwho-1230442

ABSTRACT

BACKGROUND: Mortality rates are high among hospitalized patients with COVID-19, especially in those intubated on the ICU. Insight in pathways associated with unfavourable outcome may lead to new treatment strategies. METHODS: We performed a prospective cohort study of patients with COVID-19 admitted to general ward or ICU who underwent serial blood sampling. To provide insight in the pathways involved in disease progression, associations were estimated between outcome risk and serial measurements of 64 biomarkers in potential important pathways of COVID-19 infection (inflammation, tissue damage, complement system, coagulation and fibrinolysis) using joint models combining Cox regression and linear mixed-effects models. For patients admitted to the general ward, the primary outcome was admission to the ICU or mortality (unfavourable outcome). For patients admitted to the ICU, the primary outcome was 12-week mortality. FINDINGS: A total of 219 patients were included: 136 (62%) on the ward and 119 patients (54%) on the ICU; 36 patients (26%) were included in both cohorts because they were transferred from general ward to ICU. On the general ward, 54 of 136 patients (40%) had an unfavourable outcome and 31 (23%) patients died. On the ICU, 54 out of 119 patients (45%) died. Unfavourable outcome on the general ward was associated with changes in concentrations of IL-6, IL-8, IL-10, soluble Receptor for Advanced Glycation End Products (sRAGE), vascular cell adhesion molecule 1 (VCAM-1) and Pentraxin-3. Death on the ICU was associated with changes in IL-6, IL-8, IL-10, sRAGE, VCAM-1, Pentraxin-3, urokinase-type plasminogen activator receptor, IL-1-receptor antagonist, CD14, procalcitonin, tumor necrosis factor alfa, tissue factor, complement component 5a, Growth arrest-specific 6, angiopoietin 2, and lactoferrin. Pathway analysis showed that unfavourable outcome on the ward was mainly driven by chemotaxis and interleukin production, whereas death on ICU was associated with a variety of pathways including chemotaxis, cell-cell adhesion, innate host response mechanisms, including the complement system, viral life cycle regulation, angiogenesis, wound healing and response to corticosteroids. INTERPRETATION: Clinical deterioration in patients with severe COVID-19 involves multiple pathways, including chemotaxis and interleukin production, but also endothelial dysfunction, the complement system, and immunothrombosis. Prognostic markers showed considerable overlap between general ward and ICU patients, but we identified distinct differences between groups that should be considered in the development and timing of interventional therapies in COVID-19. FUNDING: Amsterdam UMC, Amsterdam UMC Corona Fund, and Dr. C.J. Vaillant Fonds.


Subject(s)
Biomarkers/blood , COVID-19/mortality , Patient Admission/statistics & numerical data , Aged , COVID-19/blood , Chemotaxis , Female , Humans , Intensive Care Units , Interleukins/blood , Male , Middle Aged , Prognosis , Prospective Studies
12.
Sci Transl Med ; 13(596)2021 06 02.
Article in English | MEDLINE | ID: covidwho-1225692

ABSTRACT

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Subject(s)
Antibodies, Viral/chemistry , COVID-19/immunology , Immunoglobulin G/chemistry , Macrophages, Alveolar/immunology , Glycosylation , Humans , Inflammation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
13.
Thorax ; 76(10): 1010-1019, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180971

ABSTRACT

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Subject(s)
COVID-19/immunology , Immunity, Cellular/physiology , Inflammation Mediators/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , COVID-19/blood , COVID-19/pathology , Critical Care , Critical Illness , Female , Flow Cytometry , Humans , Macrophages/physiology , Male , Middle Aged , T-Lymphocytes/physiology
14.
Eur J Immunol ; 51(6): 1535-1538, 2021 06.
Article in English | MEDLINE | ID: covidwho-1151896

ABSTRACT

Despite high levels of CXCR3 ligands in mechanically ventilated COVID-19 patients, BALF CD8 T cells were not enriched in CXCR3+ cells but rather CCR6+ , likely due to high CCL20 levels in BALF, and had very high PD-1 expression. In mechanically ventilated, but not ward, patients Th-1 immunity is impaired. ​.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Chemokine CCL20/immunology , Lung/immunology , Receptors, CCR6/immunology , Respiration, Artificial , SARS-CoV-2/immunology , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , COVID-19/therapy , Female , Humans , Lung/pathology , Lymphocyte Count , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL