Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
JAMA Netw Open ; 5(5): e2214171, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1864298

ABSTRACT

Importance: In emergency epidemic and pandemic settings, public health agencies need to be able to measure the population-level attack rate, defined as the total percentage of the population infected thus far. During vaccination campaigns in such settings, public health agencies need to be able to assess how much the vaccination campaign is contributing to population immunity; specifically, the proportion of vaccines being administered to individuals who are already seropositive must be estimated. Objective: To estimate population-level immunity to SARS-CoV-2 through May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Design, Setting, and Participants: This observational case series assessed cases, hospitalizations, intensive care unit occupancy, ventilator occupancy, and deaths from March 1, 2020, to May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Data were analyzed from July 2021 to November 2021. Exposures: COVID-19-positive test result reported to state department of health. Main Outcomes and Measures: The main outcomes were statistical estimates, from a bayesian inference framework, of the percentage of individuals as of May 31, 2021, who were (1) previously infected and vaccinated, (2) previously uninfected and vaccinated, and (3) previously infected but not vaccinated. Results: At the state level, there were a total of 1 160 435 confirmed COVID-19 cases in Rhode Island, Massachusetts, and Connecticut. The median age among individuals with confirmed COVID-19 was 38 years. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in these states was less than 15%, setting the stage for a large epidemic wave during winter 2020 to 2021. Population immunity estimates for May 31, 2021, were 73.4% (95% credible interval [CrI], 72.9%-74.1%) for Rhode Island, 64.1% (95% CrI, 64.0%-64.4%) for Connecticut, and 66.3% (95% CrI, 65.9%-66.9%) for Massachusetts, indicating that more than 33% of residents in these states were fully susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned owing to an estimated 34.1% (95% CrI, 32.9%-35.2%) of vaccines in Rhode Island, 24.6% (95% CrI, 24.3%-25.1%) of vaccines in Connecticut, and 27.6% (95% CrI, 26.8%-28.6%) of vaccines in Massachusetts being distributed to individuals who were already seropositive. Conclusions and Relevance: These findings suggest that future emergency-setting vaccination planning may have to prioritize high vaccine coverage over optimized vaccine distribution to ensure that sufficient levels of population immunity are reached during the course of an ongoing epidemic or pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Bayes Theorem , COVID-19/epidemiology , COVID-19 Vaccines/therapeutic use , Humans , Incidence , New England
2.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: covidwho-1758789

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Theor Popul Biol ; 144: 81-83, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1728723
4.
Nature ; 603(7902): 679-686, 2022 03.
Article in English | MEDLINE | ID: covidwho-1638766

ABSTRACT

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Immune Evasion , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Botswana/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , Models, Molecular , Mutation , Phylogeny , Recombination, Genetic , SARS-CoV-2/classification , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1401294

ABSTRACT

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Pandemics , Recombination, Genetic , SARS-CoV-2/genetics , Base Sequence/genetics , COVID-19/virology , Computational Biology/methods , Gene Frequency , Genome, Viral , Genotype , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , United Kingdom/epidemiology , Whole Genome Sequencing/methods
6.
Cell ; 184(19): 4848-4856, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1363914

ABSTRACT

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Animals , Biological Evolution , COVID-19/virology , Humans , Laboratories , SARS-CoV-2/genetics , Zoonoses/virology
7.
BMC Med ; 19(1): 162, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1308097

ABSTRACT

BACKGROUND: When three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020-2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression. METHODS: We evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020-2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. RESULTS: We find that allocating a substantial proportion (>75%) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021. CONCLUSIONS: Assuming high vaccination coverage (>28%) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19 , Communicable Disease Control/organization & administration , Health Care Rationing/organization & administration , Resource Allocation/organization & administration , Vaccination Coverage , Vaccination , Age Factors , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Incidence , Massachusetts/epidemiology , Models, Theoretical , Public Health/methods , Public Health/standards , Rhode Island/epidemiology , SARS-CoV-2 , Vaccination/methods , Vaccination/statistics & numerical data , Vaccination Coverage/statistics & numerical data , Vaccination Coverage/supply & distribution
8.
PLoS Biol ; 19(3): e3001115, 2021 03.
Article in English | MEDLINE | ID: covidwho-1133664

ABSTRACT

Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses. In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered "facilitating" intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human-human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus.


Subject(s)
COVID-19/virology , Chiroptera/virology , SARS-CoV-2/genetics , Viral Zoonoses/virology , Animals , COVID-19/epidemiology , COVID-19/transmission , Evolution, Molecular , Genome, Viral , Host Specificity , Humans , Pandemics , Phylogeny , Receptors, Virus/genetics , SARS-CoV-2/pathogenicity , Selection, Genetic , Viral Zoonoses/genetics , Viral Zoonoses/transmission
9.
Nat Microbiol ; 5(11): 1408-1417, 2020 11.
Article in English | MEDLINE | ID: covidwho-690289

ABSTRACT

There are outstanding evolutionary questions on the recent emergence of human coronavirus SARS-CoV-2 including the role of reservoir species, the role of recombination and its time of divergence from animal viruses. We find that the sarbecoviruses-the viral subgenus containing SARS-CoV and SARS-CoV-2-undergo frequent recombination and exhibit spatially structured genetic diversity on a regional scale in China. SARS-CoV-2 itself is not a recombinant of any sarbecoviruses detected to date, and its receptor-binding motif, important for specificity to human ACE2 receptors, appears to be an ancestral trait shared with bat viruses and not one acquired recently via recombination. To employ phylogenetic dating methods, recombinant regions of a 68-genome sarbecovirus alignment were removed with three independent methods. Bayesian evolutionary rate and divergence date estimates were shown to be consistent for these three approaches and for two different prior specifications of evolutionary rates based on HCoV-OC43 and MERS-CoV. Divergence dates between SARS-CoV-2 and the bat sarbecovirus reservoir were estimated as 1948 (95% highest posterior density (HPD): 1879-1999), 1969 (95% HPD: 1930-2000) and 1982 (95% HPD: 1948-2009), indicating that the lineage giving rise to SARS-CoV-2 has been circulating unnoticed in bats for decades.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , Animals , Bayes Theorem , Betacoronavirus/metabolism , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus Infections/metabolism , Evolution, Molecular , Genetic Variation , Genome, Viral , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/metabolism , Recombination, Genetic , SARS-CoV-2
10.
Mol Biol Evol ; 37(9): 2706-2710, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-641314

ABSTRACT

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.


Subject(s)
Alphacoronavirus/genetics , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Reassortant Viruses/genetics , Alphacoronavirus/classification , Alphacoronavirus/pathogenicity , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Biological Evolution , COVID-19 , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Coronavirus Infections/virology , CpG Islands , Dogs , Eutheria/virology , Humans , Immune Evasion/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Reassortant Viruses/classification , Reassortant Viruses/pathogenicity , SARS-CoV-2 , Virus Replication
11.
Sci Immunol ; 5(47)2020 05 19.
Article in English | MEDLINE | ID: covidwho-324551

ABSTRACT

Serological testing for SARS-CoV-2 has enormous potential to contribute to COVID-19 pandemic response efforts. However, the required performance characteristics of antibody tests will critically depend on the use case (individual-level vs. population-level).


Subject(s)
Clinical Laboratory Techniques/methods , Antibodies, Viral/analysis , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Epidemiological Monitoring , Humans , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL