Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Clin Microbiol Infect ; 2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1872991

ABSTRACT

OBJECTIVES: The COVID-19 pandemic increases healthcare worker (HCW) absenteeism. The bacillus Calmette-Guérin (BCG) vaccine may provide non-specific protection against respiratory infections through enhancement of trained immunity. We investigated the impact of BCG vaccination on HCW absenteeism during the COVID-19 pandemic. METHODS: HCWs exposed to COVID-19 patients in nine Dutch hospitals were randomized to BCG vaccine or placebo in a 1:1 ratio, and followed for one year using a mobile phone application. The primary endpoint was the self-reported number of days of unplanned absenteeism for any reason. Secondary endpoints included documented COVID-19, acute respiratory symptoms or fever. This was an investigator-funded study, registered at ClinicalTrials.gov (NCT03987919). RESULTS: In March/April 2020, 1511 HCWs were enrolled. The median duration of follow-up was 357 person-days (interquartile range [IQR], 351 to 361). Unplanned absenteeism for any reason was observed in 2.8% of planned working days in the BCG group and 2.7% in the placebo group (adjusted relative risk 0.94; 95% credible interval, 0.78-1.15). Cumulative incidences of documented COVID-19 were 14.2% in the BCG and 15.2% in the placebo group (adjusted hazard ratio (aHR) 0.94; 95% confidence interval (CI), 0.72-1.24). First episodes of self-reported acute respiratory symptoms or fever occurred in 490 (66.2%) and 443 (60.2%) participants, respectively (aHR: 1.13; 95% CI, 0.99-1.28). Thirty-one serious adverse events were reported (13 after BCG, 18 after placebo), none considered related to study medication. CONCLUSIONS: During the COVID-19 pandemic, BCG-vaccination of HCW exposed to COVID-19 patients did not reduce unplanned absenteeism nor documented COVID-19.

2.
Eur J Epidemiol ; 37(5): 549-561, 2022 May.
Article in English | MEDLINE | ID: covidwho-1872578

ABSTRACT

Household transmission studies are useful to quantify SARS-CoV-2 transmission dynamics. We conducted a remote prospective household study to quantify transmission, and the effects of subject characteristics, household characteristics, and implemented infection control measures on transmission. Households with a laboratory-confirmed SARS-CoV-2 index case were enrolled < 48 h following test result. Follow-up included digitally daily symptom recording, regular nose-throat self-sampling and paired dried blood spots from all household members. Samples were tested for virus detection and SARS-CoV-2 antibodies. Secondary attack rates (SARs) and associated factors were estimated using logistic regression. In 276 households with 920 participants (276 index cases and 644 household members) daily symptom diaries and questionnaires were completed by 95%, and > 85% completed sample collection. 200 secondary SARS-CoV-2 infections were detected, yielding a household SAR of 45.7% (95% CI 39.7-51.7%) and per-person SAR of 32.6% (95%CI: 28.1-37.4%). 126 (63%) secondary cases were detected at enrollment. Mild (aRR = 0.57) and asymptomatic index cases (aRR = 0.29) were less likely to transmit SARS-CoV-2, compared to index cases with an acute respiratory illness (p = 0.03 for trend), and child index cases (< 12 years aRR = 0.60 and 12-18 years aRR = 0.85) compared to adults (p = 0.03 for trend). Infection control interventions in households had no significant effect on transmission. We found high SARs with the majority of transmissions occuring early after SARS-CoV-2 introduction into the household. This may explain the futile effect of implemented household measures. Age and symptom status of the index case influence secondary transmission. Remote, digitally-supported study designs with self-sampling are feasible for studying transmission under pandemic restrictions.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Child , Family Characteristics , Humans , Pandemics/prevention & control , Prospective Studies
3.
Clin Infect Dis ; 2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1852979

ABSTRACT

BACKGROUND: We aimed to determine the non-inferiority of fosfomycin, compared to ciprofloxacin, as oral stepdown treatment for E. coli febrile urinary tract infections (fUTIs) in women. METHODS: This was a double-blind, randomised controlled trial in 15 Dutch hospitals. Adult women receiving 2-5 days of empirical intravenous antimicrobials for E.coli fUTI, were assigned to stepdown treatment with once-daily 3 gr fosfomycin or twice-daily 0.5 gr ciprofloxacin, for 10 days of total antibiotic treatment. For the primary endpoint clinical cure at day 6-10 post-end-of-treatment a non-inferiority margin of 10% was chosen. The trial was registered on Trialregister.nl (NTR6449). RESULTS: After enrolment of 97 patients between 2017-2020, the trial ended prematurely because of the Covid-19 pandemic. The primary endpoint was met in 36/48 patients (75.0%) assigned to fosfomycin and 30/46 patients (65.2%) assigned to ciprofloxacin (Risk Difference: 9.6%, 95%-Confidence-Interval: -8.8% to 28.0%). In patients assigned to fosfomycin and ciprofloxacin, microbiological cure at day 6-10 post-end-of-treatment occurred in 29/37 (78.4%) and 33/35 (94.3%; RD: -16.2%, 95%CI: -32.7 to -0.0%), and clinical cure at day 30-35 post-end-of-treatment occurred in 35/47 (75.6%) and 33/44 (75.0%; RD: 0.4%, 95%CI: -18·4% to 17·6%) respectively. Any adverse event was reported in 35/48 (72.9%) and 32/46 (69.6%) patients (RD: 3.3%, 95%CI: -15.0% to 21.6%%), and any gastro-intestinal adverse event in 25/48 (52.1%) and 14/46 (30.4%) patients (RD: 20.8%, 95%CI: 1.6% to 40.0%), respectively. CONCLUSIONS: Fosfomycin is non-inferior to ciprofloxacin as oral stepdown treatment for fUTI caused by E.coli in women. Fosfomycin use is associated with more gastro-intestinal events.

4.
JAMA ; 327(13): 1247-1259, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1801957

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 , Critical Illness , Platelet Aggregation Inhibitors , Venous Thromboembolism , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Bayes Theorem , COVID-19/complications , COVID-19/drug therapy , COVID-19/mortality , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/therapeutic use , Respiration, Artificial , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
5.
J Thromb Haemost ; 20(5): 1206-1212, 2022 05.
Article in English | MEDLINE | ID: covidwho-1745875

ABSTRACT

BACKGROUND: Pulmonary embolism (PE) occurs in one-third of critically-ill COVID-19 patients. Although prior studies identified several pathways contributing to thrombogenicity, it is unknown whether this is COVID-19-specific or also occurs in ARDS patients with another infection. OBJECTIVE: To compare pathway activity among patients having COVID-19 with PE (C19PE+), COVID-19 without PE (C19PE-), and influenza-associated ARDS (IAA) using a targeted proteomics approach. METHODS: We exploited an existing biorepository containing daily plasma samples to carefully match C19PE+ cases to C19PE- and IAA controls on mechanical ventilation duration, PEEP, FiO2, and cardiovascular-SOFA (n = 15 per group). Biomarkers representing various thrombosis pathways were measured using proximity extension- and ELISA-assays. Summed z-scores of individual biomarkers were used to represent total pathway activity. RESULTS: We observed no relevant between-group differences among 22 biomarkers associated with activation of endothelium, platelets, complement, coagulation, fibrinolysis or inflammation, except sIL-1RT2 and sST2, which were lower in C19PE- than IAA (log2-Foldchange -0.67, p = .022 and -1.78, p = .022, respectively). However, total pathway analysis indicated increased activation of endothelium (z-score 0.2 [-0.3-1.03] vs. 0.98 [-2.5--0.3], p = .027), platelets (1.0 [-1.3-3.0] vs. -3.3 [-4.1--0.6], p = .023) and coagulation (0.8 [-0.5-2.0] vs. -1.0 [-1.6-1.0], p = .023) in COVID-19 patients (C19PE+/C19PE- groups combined) compared to IAA. CONCLUSION: We observed only minor differences between matched C19PE+, C19PE-, and IAA patients, which suggests individual biomarkers mostly reflect disease severity. However, analysis of total pathway activity suggested upregulation of some distinct processes in COVID-19 could be etiologically related to increased PE-risk.


Subject(s)
COVID-19 , Influenza, Human , Pulmonary Embolism , Respiratory Distress Syndrome , Thrombosis , Biomarkers , COVID-19/complications , Humans , Influenza, Human/complications , Influenza, Human/diagnosis , Proteomics , Pulmonary Embolism/diagnosis , SARS-CoV-2
6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314526

ABSTRACT

Background: Additional safe and effective vaccines are needed to control the COVID-19 pandemic.Methods: HERALD is an ongoing phase 2b/3 randomised, observer-blinded, placebo-controlled clinical trial in ten countries in Europe and Latin America. SARS-CoV-2 naïve adults were randomised 1:1 to receive two doses of CVnCoV mRNA vaccine candidate or placebo 28 days apart. Primary efficacy analysis included symptomatic COVID-19 more than 14 days after second dose. Solicited adverse events (AEs) were assessed in phase 2b participants and unsolicited AEs in all participants. The study is registered at ClinicalTrials.gov (NCT04652102).Findings: Between 11 December 2020 and 12 April 2021, 39 680 participants were randomised and 39 529 received CVnCoV (19 783) or placebo (19 746). Overall VE was 48·2% (95% CI: 31·0–61·4;83/12 851 vs. 145/12 221 in CVnCoV and placebo recipients, respectively). Overall VE against moderate-to-severe COVID-19 was 70·7% (95% CI: 42·5–86·1;12/12 851 vs. 37/12 211, respectively). In participants aged 18–60 years VE was 52·5% (95% CI: 36·2–64·8;71/11 532 vs. 136/11 031, respectively). Too few cases occurred in participants aged ≥61 years (CVnCoV: 12, placebo: 9) precluding VE evaluation. Wild type SARS-CoV-2 was detected in 7/204 (3%) sequenced cases, with 14 variants being responsible for the other cases. Solicited adverse events, mostly systemic, were more common in CVnCoV recipients;542/2002 CVnCoV recipients and 61/1980 placebo recipients reported grade 3 events. Unsolicited serious AEs were reported for 82/19 746 CVnCoV recipients and 66/19 746 placebo recipients;8 and 2 SAEs, respectively were considered related to vaccination. Fatal SAEs were reported for 8 and 6 CVnCoV and placebo recipients.Interpretation: CVnCoV is efficacious in the prevention of COVID-19 of any severity and has an acceptable safety profile.Trial Registration: Study number: ClinicalTrials.gov Identifier: NCT04652102. Funding: This trial was funded by the German Federal Ministry of Education and Research (grant01KI20703), and CureVac AG.Declaration of Interest: MB declares institutional funding from CureVac during the conduct of this study, from Janssen Vaccines, molecular partners, and Merck outside of the submitted work, and consulting fees from Janssen Vaccines. EJLDB, and MFMR, TO and XSL declare institutional funding from CureVac during the conduct of this study. LE, and LG declare institutional funding from CureVac during the conduct of this study and outside of the submitted work. CFL declares institutional funding from CureVac during the conduct of this study, and outside of the submitted work, and is a member of WHO Covid-19 Vaccine Effectiveness Working Group and WHO Product Development for Vaccines Advisory Committee (PDVAC). CL declares institutional funding from CureVac during the conduct of this study, and is a member of the of German Society of Infection board. ILR declares institutional funding from CureVac during the conduct of this study and from J &J, and OSE Immunotherapeutics outside of the submitted work. PGK declares institutional funding from CureVac during the conduct of this study, and is a member of the scientific advisory board for the HERALD clinical trial. VVRH declares institutional funding from CureVac during the conduct of this study, and speakers fees from Gilead outside of the submitted work. HJ declares consultant fees from CureVac, is the Medical Responsible Person for the HERALD clinical trial, and is co-chair of DSMB for the HERALD clinical trial. AK and PM are employed by CureVac, and hold stock options. OSK declares consultant fees from CureVac during the conduct of this study, and is a member of the DSMB for a CVnCoV phase 1 trial. TV declares consultant fees from CureVac during the conduct of this study, and consultant fees from CureVac, AstraZeneca, Pfizer, Johnson&Johnson, and Moderna outside of the submitted work. LO is employed by CureVac, and holds stock options, and is the holder of a pending patent. The other authors declare no competing interests.Ethical Approval: The trial protocol and amendments have been approved by the appropriate independent ethics committee or institutional review board at each study centre

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307109

ABSTRACT

The human body produces a vast variety of circulating immunoglobulins (Igs) to recognize and combat pathogens and other non-self molecular components. In human plasma the most abundant class of Igs is the immunoglobulin G subclass I (IgG1) 1. Through somatic recombination and hypermutation, our bodies can theoretically produce several billions of distinct IgG1 variants 2,3. The theoretically available IgG1 repertoire thereby far exceeds the physical number of memory B cells available 4. The theoretical possibilities are highly suggestive of a vastly complex IgG1 plasma repertoire, but here we show that in all studied individuals, this repertoire is dominated by only a few dozens of clones. Our data indicate that each person’s IgG1 repertoire is distinctly unique, representing a personalized barcode. We sequentially measured IgG1 repertoires of critically ill individuals with hospital-acquired sepsis, revealing the occurrence and disappearance of specific IgG1 clones during the evolution of the disease. We demonstrate here that 1) personalized IgG1 profiling by LC-MS is feasible, 2) each person exhibits a unique serological IgG1 repertoire, 3) this repertoire adapts to changes in physiology, and 4) that individual plasma IgG clones can be de novo sequenced by integrative protein-centric and peptide-centric proteomic approaches. We foresee that the presented mass spectrometric approach will accommodate more rapid development of monoclonal antibody treatments, immediately assessing fully human, matured, and optimized molecules. The potential of repertoires from disease survivors can then be used to prevent disease excesses, as was demonstrated for Ebola 5-7, and is the hope for the current COVID-19 pandemic.

8.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

IMPORTANCE: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. OBJECTIVE: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONS: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURES: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. CONCLUSIONS AND RELEVANCE: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use
9.
Clin Infect Dis ; 2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1522156

ABSTRACT

BACKGROUND: We aimed to determine the non-inferiority of fosfomycin, compared to ciprofloxacin, as oral stepdown treatment for E. coli febrile urinary tract infections (fUTIs) in women. METHODS: This was a double-blind, randomised controlled trial in 15 Dutch hospitals. Adult women receiving 2-5 days of empirical intravenous antimicrobials for E.coli fUTI, were assigned to stepdown treatment with once-daily 3 gr fosfomycin or twice-daily 0.5 gr ciprofloxacin, for 10 days of total antibiotic treatment. For the primary endpoint clinical cure at day 6-10 post-end-of-treatment a non-inferiority margin of 10% was chosen. The trial was registered on Trialregister.nl (NTR6449). RESULTS: After enrolment of 97 patients between 2017-2020, the trial ended prematurely because of the Covid-19 pandemic. The primary endpoint was met in 36/48 patients (75.0%) assigned to fosfomycin and 30/46 patients (65.2%) assigned to ciprofloxacin (Risk Difference: 9.6%, 95%-Confidence-Interval: -8.8% to 28.0%). In patients assigned to fosfomycin and ciprofloxacin, microbiological cure at day 6-10 post-end-of-treatment occurred in 29/37 (78.4%) and 33/35 (94.3%; RD: -16.2%, 95%CI: -32.7 to -0.0%), and clinical cure at day 30-35 post-end-of-treatment occurred in 35/47 (75.6%) and 33/44 (75.0%; RD: 0.4%, 95%CI: -18·4% to 17·6%) respectively. Any adverse event was reported in 35/48 (72.9%) and 32/46 (69.6%) patients (RD: 3.3%, 95%CI: -15.0% to 21.6%%), and any gastro-intestinal adverse event in 25/48 (52.1%) and 14/46 (30.4%) patients (RD: 20.8%, 95%CI: 1.6% to 40.0%), respectively. CONCLUSIONS: Fosfomycin is non-inferior to ciprofloxacin as oral stepdown treatment for fUTI caused by E.coli in women. Fosfomycin use is associated with more gastro-intestinal events.

10.
BMC Med ; 19(1): 211, 2021 08 27.
Article in English | MEDLINE | ID: covidwho-1470617

ABSTRACT

BACKGROUND: Emergence of more transmissible SARS-CoV-2 variants requires more efficient control measures to limit nosocomial transmission and maintain healthcare capacities during pandemic waves. Yet the relative importance of different strategies is unknown. METHODS: We developed an agent-based model and compared the impact of personal protective equipment (PPE), screening of healthcare workers (HCWs), contact tracing of symptomatic HCWs and restricting HCWs from working in multiple units (HCW cohorting) on nosocomial SARS-CoV-2 transmission. The model was fit on hospital data from the first wave in the Netherlands (February until August 2020) and assumed that HCWs used 90% effective PPE in COVID-19 wards and self-isolated at home for 7 days immediately upon symptom onset. Intervention effects on the effective reproduction number (RE), HCW absenteeism and the proportion of infected individuals among tested individuals (positivity rate) were estimated for a more transmissible variant. RESULTS: Introduction of a variant with 56% higher transmissibility increased - all other variables kept constant - RE from 0.4 to 0.65 (+ 63%) and nosocomial transmissions by 303%, mainly because of more transmissions caused by pre-symptomatic patients and HCWs. Compared to baseline, PPE use in all hospital wards (assuming 90% effectiveness) reduced RE by 85% and absenteeism by 57%. Screening HCWs every 3 days with perfect test sensitivity reduced RE by 67%, yielding a maximum test positivity rate of 5%. Screening HCWs every 3 or 7 days assuming time-varying test sensitivities reduced RE by 9% and 3%, respectively. Contact tracing reduced RE by at least 32% and achieved higher test positivity rates than screening interventions. HCW cohorting reduced RE by 5%. Sensitivity analyses show that our findings do not change significantly for 70% PPE effectiveness. For low PPE effectiveness of 50%, PPE use in all wards is less effective than screening every 3 days with perfect sensitivity but still more effective than all other interventions. CONCLUSIONS: In response to the emergence of more transmissible SARS-CoV-2 variants, PPE use in all hospital wards might still be most effective in preventing nosocomial transmission. Regular screening and contact tracing of HCWs are also effective interventions but critically depend on the sensitivity of the diagnostic test used.


Subject(s)
COVID-19 , Cross Infection , COVID-19/prevention & control , COVID-19/transmission , Cross Infection/epidemiology , Cross Infection/prevention & control , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Netherlands/epidemiology , SARS-CoV-2
11.
Intensive Care Med ; 47(8): 867-886, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1305144

ABSTRACT

PURPOSE: To study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: Critically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable. RESULTS: We randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (- 1 to 15), 0 (- 1 to 9) and-1 (- 1 to 7), respectively, compared to 6 (- 1 to 16) in the control group with in-hospital mortality of 88/249 (35%), 17/49 (35%), 13/26 (50%), respectively, compared to 106/353 (30%) in the control group. The three interventions decreased organ support-free days compared to control (OR [95% credible interval]: 0.73 [0.55, 0.99], 0.57 [0.35, 0.83] 0.41 [0.24, 0.72]), yielding posterior probabilities that reached the threshold futility (≥ 99.0%), and high probabilities of harm (98.0%, 99.9% and > 99.9%, respectively). The three interventions reduced hospital survival compared with control (OR [95% CrI]: 0.65 [0.45, 0.95], 0.56 [0.30, 0.89], and 0.36 [0.17, 0.73]), yielding high probabilities of harm (98.5% and 99.4% and 99.8%, respectively). CONCLUSION: Among critically ill patients with COVID-19, lopinavir-ritonavir, hydroxychloroquine, or combination therapy worsened outcomes compared to no antiviral therapy.


Subject(s)
COVID-19 , Ritonavir , Adult , Antiviral Agents/therapeutic use , Bayes Theorem , COVID-19/drug therapy , Critical Illness , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2
12.
Nat Commun ; 12(1): 1614, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132071

ABSTRACT

The role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Basic Reproduction Number/prevention & control , Basic Reproduction Number/statistics & numerical data , Bayes Theorem , COVID-19/transmission , Child , Child, Preschool , Cross-Sectional Studies , Female , Holidays , Hospitalization , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Biological , Models, Statistical , Netherlands/epidemiology , Pandemics/prevention & control , Schools , Seroepidemiologic Studies , Young Adult
13.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
14.
EClinicalMedicine ; 31: 100677, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-957035

ABSTRACT

BACKGROUND: RT-qPCR is the reference test for identification of active SARS-CoV-2 infection, but is associated with diagnostic delay. Antigen detection assays can generate results within 20 min and outside of laboratory settings. Yet, their diagnostic test performance in real life settings has not been determined. METHODS: The diagnostic value of the Panbio™ COVID-19 Ag Rapid Test (Abbott), was determined in  comparison to RT-qPCR (Seegene Allplex) in community-dwelling mildly symptomatic subjects in a medium (Utrecht, the Netherlands) and high endemic area (Aruba), using two concurrently obtained nasopharyngeal swabs.Findings: 1367 and 208 subjects were enrolled in Utrecht and Aruba, respectively. SARS-CoV-2 prevalence, based on RT-qPCR, was 10.2% (n = 139) and 30.3% (n = 63) in Utrecht and Aruba respectively. Specificity of the Panbio™ COVID-19 Ag Rapid Test was 100% (95%CI: 99.7-100%) in both settings. Test sensitivity was 72.6% (95%CI: 64.5-79.9%) in the Netherlands and 81.0% (95% CI: 69.0-89.8%) in Aruba. Probability of false negative results was associated with RT-qPCR Ct-values, but not with duration of symptoms. Restricting RT-qPCR test positivity to Ct-values <32 yielded test sensitivities of 95.2% (95%CI: 89.3-98.5%) in Utrecht and 98.0% (95%CI: 89.2-99.95%) in Aruba. INTERPRETATION: In community-dwelling subjects with mild respiratory symptoms the Panbio™ COVID-19 Ag Rapid Test had 100% specificity, and a sensitivity above 95% for nasopharyngeal samples when using Ct-values <32 cycles as cut-off for RT-qPCR test positivity. Considering short turnaround times, user friendliness, low costs and opportunities for decentralized testing, this test can improve our efforts to control transmission of SARS-CoV-2.

15.
Lancet Public Health ; 5(8): e452-e459, 2020 08.
Article in English | MEDLINE | ID: covidwho-652598

ABSTRACT

BACKGROUND: In countries with declining numbers of confirmed cases of COVID-19, lockdown measures are gradually being lifted. However, even if most physical distancing measures are continued, other public health measures will be needed to control the epidemic. Contact tracing via conventional methods or mobile app technology is central to control strategies during de-escalation of physical distancing. We aimed to identify key factors for a contact tracing strategy to be successful. METHODS: We evaluated the impact of timeliness and completeness in various steps of a contact tracing strategy using a stochastic mathematical model with explicit time delays between time of infection and symptom onset, and between symptom onset, diagnosis by testing, and isolation (testing delay). The model also includes tracing of close contacts (eg, household members) and casual contacts, followed by testing regardless of symptoms and isolation if testing positive, with different tracing delays and coverages. We computed effective reproduction numbers of a contact tracing strategy (RCTS) for a population with physical distancing measures and various scenarios for isolation of index cases and tracing and quarantine of their contacts. FINDINGS: For the most optimistic scenario (testing and tracing delays of 0 days and tracing coverage of 100%), and assuming that around 40% of transmissions occur before symptom onset, the model predicts that the estimated effective reproduction number of 1·2 (with physical distancing only) will be reduced to 0·8 (95% CI 0·7-0·9) by adding contact tracing. The model also shows that a similar reduction can be achieved when testing and tracing coverage is reduced to 80% (RCTS 0·8, 95% CI 0·7-1·0). A testing delay of more than 1 day requires the tracing delay to be at most 1 day or tracing coverage to be at least 80% to keep RCTS below 1. With a testing delay of 3 days or longer, even the most efficient strategy cannot reach RCTS values below 1. The effect of minimising tracing delay (eg, with app-based technology) declines with decreasing coverage of app use, but app-based tracing alone remains more effective than conventional tracing alone even with 20% coverage, reducing the reproduction number by 17·6% compared with 2·5%. The proportion of onward transmissions per index case that can be prevented depends on testing and tracing delays, and given a 0-day tracing delay, ranges from up to 79·9% with a 0-day testing delay to 41·8% with a 3-day testing delay and 4·9% with a 7-day testing delay. INTERPRETATION: In our model, minimising testing delay had the largest impact on reducing onward transmissions. Optimising testing and tracing coverage and minimising tracing delays, for instance with app-based technology, further enhanced contact tracing effectiveness, with the potential to prevent up to 80% of all transmissions. Access to testing should therefore be optimised, and mobile app technology might reduce delays in the contact tracing process and optimise contact tracing coverage. FUNDING: ZonMw, Fundação para a Ciência e a Tecnologia, and EU Horizon 2020 RECOVER.


Subject(s)
Clinical Laboratory Techniques/statistics & numerical data , Contact Tracing/methods , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Mobile Applications , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Public Health Practice , Quarantine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL