Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Diabetes Metab Res Rev ; : e3565, 2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1925908

ABSTRACT

AIMS: Several reports indicate that diabetes determines an increased mortality risk in patients with coronavirus disease 19 (COVID-19) and a good glycaemic control appears to be associated with more favourable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of COVID-19 related deaths. This disease is indeed characterised by abnormal inflammatory response and vascular dysfunction, leading to the involvement and failure of different systems, including severe acute respiratory distress syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for a detrimental synergistic combination that could explain the increased mortality observed in hyperglycaemic patients. MATERIALS AND METHODS: In this work, we conduct a narrative review on this intriguing connection. Together with this, we also present the clinical characteristics, outcomes, laboratory and histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 admitted to a third-level Hospital in Milan. RESULTS: We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered inflammatory profile. CONCLUSIONS: This may support the hypothesis that diabetes and COVID-19 meet at the crossroads of inflammation and vascular dysfunction. (ClinicalTrials.gov NCT04463849 and NCT04382794).

2.
Diabetes ; 71(7): 1579-1590, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1834217

ABSTRACT

Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1ß (IL-1ß), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of ß-cell-altered proinsulin processing, as well as ß-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.


Subject(s)
COVID-19 , Islets of Langerhans , COVID-19/complications , Cytokines/metabolism , Humans , Hyperglycemia/virology , Islets of Langerhans/metabolism , Islets of Langerhans/virology , Proinsulin/metabolism , SARS-CoV-2
3.
Nanomicro Lett ; 14(1): 41, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1606244

ABSTRACT

During the last decades, the use of nanotechnology in medicine has effectively been translated to the design of drug delivery systems, nanostructured tissues, diagnostic platforms, and novel nanomaterials against several human diseases and infectious pathogens. Nanotechnology-enabled vaccines have been positioned as solutions to mitigate the pandemic outbreak caused by the novel pathogen severe acute respiratory syndrome coronavirus 2. To fast-track the development of vaccines, unprecedented industrial and academic collaborations emerged around the world, resulting in the clinical translation of effective vaccines in less than one year. In this article, we provide an overview of the path to translation from the bench to the clinic of nanotechnology-enabled messenger ribonucleic acid vaccines and examine in detail the types of delivery systems used, their mechanisms of action, obtained results during each phase of their clinical development and their regulatory approval process. We also analyze how nanotechnology is impacting global health and economy during the COVID-19 pandemic and beyond.

4.
J Am Soc Nephrol ; 32(1): 115-126, 2021 01.
Article in English | MEDLINE | ID: covidwho-1496665

ABSTRACT

BACKGROUND: Although diabetic kidney disease is the leading cause of ESKD in the United States, identifying those patients who progress to ESKD is difficult. Efforts are under way to determine if plasma biomarkers can help identify these high-risk individuals. METHODS: In our case-cohort study of 894 Chronic Renal Insufficiency Cohort Study participants with diabetes and an eGFR of <60 ml/min per 1.73 m2 at baseline, participants were randomly selected for the subcohort; cases were those patients who developed progressive diabetic kidney disease (ESKD or 40% eGFR decline). Using a multiplex system, we assayed plasma biomarkers related to tubular injury, inflammation, and fibrosis (KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40). Weighted Cox regression models related biomarkers to progression of diabetic kidney disease, and mixed-effects models estimated biomarker relationships with rate of eGFR change. RESULTS: Median follow-up was 8.7 years. Higher concentrations of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were each associated with a greater risk of progression of diabetic kidney disease, even after adjustment for established clinical risk factors. After accounting for competing biomarkers, KIM-1, TNFR-2, and YKL-40 remained associated with progression of diabetic kidney disease; TNFR-2 had the highest risk (adjusted hazard ratio, 1.61; 95% CI, 1.15 to 2.26). KIM-1, TNFR-1, TNFR-2, and YKL-40 were associated with rate of eGFR decline. CONCLUSIONS: Higher plasma levels of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were associated with increased risk of progression of diabetic kidney disease; TNFR-2 had the highest risk after accounting for the other biomarkers. These findings validate previous literature on TNFR-1, TNFR-2, and KIM-1 in patients with prevalent CKD and provide new insights into the influence of suPAR and YKL-40 as plasma biomarkers that require validation.


Subject(s)
Biomarkers/blood , Diabetic Nephropathies/genetics , Kidney Failure, Chronic/genetics , Renal Insufficiency, Chronic/genetics , Adult , Aged , Chemokine CCL2/blood , Chitinase-3-Like Protein 1/blood , Cohort Studies , Diabetic Nephropathies/blood , Disease Progression , Female , Glomerular Filtration Rate , Hepatitis A Virus Cellular Receptor 1/blood , Humans , Kidney Failure, Chronic/blood , Male , Middle Aged , Phenotype , Prevalence , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Receptors, Urokinase Plasminogen Activator/blood , Renal Insufficiency, Chronic/blood , Risk , Young Adult
5.
Nat Metab ; 3(6): 774-785, 2021 06.
Article in English | MEDLINE | ID: covidwho-1243313

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) are reported to have a greater prevalence of hyperglycaemia. Cytokine release as a consequence of severe acute respiratory syndrome coronavirus 2 infection may precipitate the onset of metabolic alterations by affecting glucose homeostasis. Here we describe abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease. In a cohort of 551 patients hospitalized for COVID-19 in Italy, we found that 46% of patients were hyperglycaemic, whereas 27% were normoglycaemic. Using clinical assays and continuous glucose monitoring in a subset of patients, we detected altered glycometabolic control, with insulin resistance and an abnormal cytokine profile, even in normoglycaemic patients. Glycaemic abnormalities can be detected for at least 2 months in patients who recovered from COVID-19. Our data demonstrate that COVID-19 is associated with aberrant glycometabolic control, which can persist even after recovery, suggesting that further investigation of metabolic abnormalities in the context of long COVID is warranted.


Subject(s)
Blood Glucose/metabolism , COVID-19/blood , Hyperglycemia/metabolism , COVID-19/complications , COVID-19/virology , Cohort Studies , Humans , Hyperglycemia/complications , Insulin Resistance , Insulin-Secreting Cells/pathology , SARS-CoV-2/isolation & purification
8.
J Pediatr ; 227: 45-52.e5, 2020 12.
Article in English | MEDLINE | ID: covidwho-872293

ABSTRACT

OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.


Subject(s)
COVID-19 , Adolescent , Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , COVID-19 Testing , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Massachusetts/epidemiology , Pandemics , Severity of Illness Index , Viral Load , Young Adult
9.
Diabetes Care ; 43(12): 2999-3006, 2020 12.
Article in English | MEDLINE | ID: covidwho-809048

ABSTRACT

OBJECTIVE: Poor outcomes have been reported in patients with type 2 diabetes and coronavirus disease 2019 (COVID-19); thus, it is mandatory to explore novel therapeutic approaches for this population. RESEARCH DESIGN AND METHODS: In a multicenter, case-control, retrospective, observational study, sitagliptin, an oral and highly selective dipeptidyl peptidase 4 inhibitor, was added to standard of care (e.g., insulin administration) at the time of hospitalization in patients with type 2 diabetes who were hospitalized with COVID-19. Every center also recruited at a 1:1 ratio untreated control subjects matched for age and sex. All patients had pneumonia and exhibited oxygen saturation <95% when breathing ambient air or when receiving oxygen support. The primary end points were discharge from the hospital/death and improvement of clinical outcomes, defined as an increase in at least two points on a seven-category modified ordinal scale. Data were collected retrospectively from patients receiving sitagliptin from 1 March through 30 April 2020. RESULTS: Of the 338 consecutive patients with type 2 diabetes and COVID-19 admitted in Northern Italy hospitals included in this study, 169 were on sitagliptin, while 169 were on standard of care. Treatment with sitagliptin at the time of hospitalization was associated with reduced mortality (18% vs. 37% of deceased patients; hazard ratio 0.44 [95% CI 0.29-0.66]; P = 0.0001), with an improvement in clinical outcomes (60% vs. 38% of improved patients; P = 0.0001) and with a greater number of hospital discharges (120 vs. 89 of discharged patients; P = 0.0008) compared with patients receiving standard of care, respectively. CONCLUSIONS: In this multicenter, case-control, retrospective, observational study of patients with type 2 diabetes admitted to the hospital for COVID-19, sitagliptin treatment at the time of hospitalization was associated with reduced mortality and improved clinical outcomes as compared with standard-of-care treatment. The effects of sitagliptin in patients with type 2 diabetes and COVID-19 should be confirmed in an ongoing randomized, placebo-controlled trial.


Subject(s)
Coronavirus Infections , Coronavirus , Diabetes Mellitus, Type 2 , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Diabetes Mellitus, Type 2/drug therapy , Hospitalization , Humans , Italy , Retrospective Studies , SARS-CoV-2 , Sitagliptin Phosphate/therapeutic use
10.
medRxiv ; 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-808244

ABSTRACT

SARS-CoV-2 precipitates respiratory distress by infection of airway epithelial cells and is often accompanied by acute kidney injury. We report that Kidney Injury Molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1) is expressed in lung and kidney epithelial cells in COVID-19 patients and is a receptor for SARS-CoV-2. Human and mouse lung and kidney epithelial cells express KIM-1 and endocytose nanoparticles displaying the SARS-CoV-2 spike protein (virosomes). Uptake was inhibited by anti-KIM-1 antibodies and TW-37, a newly discovered inhibitor of KIM-1-mediated endocytosis. Enhanced KIM-1 expression by human kidney tubuloids increased uptake of virosomes. KIM-1 binds to the SARS-CoV-2 Spike protein in vitro . KIM-1 expressing cells, not expressing angiotensin-converting enzyme 2 (ACE2), are permissive to SARS-CoV-2 infection. Thus, KIM-1 is an alternative receptor to ACE2 for SARS-CoV-2. KIM-1 targeted therapeutics may prevent and/or treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL