Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Sci Rep ; 11(1): 16400, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1356583


We propose herein a mathematical model to predict the COVID-19 evolution and evaluate the impact of governmental decisions on this evolution, attempting to explain the long duration of the pandemic in the 26 Brazilian states and their capitals well as in the Federative Unit. The prediction was performed based on the growth rate of new cases in a stable period, and the graphics plotted with the significant governmental decisions to evaluate the impact on the epidemic curve in each Brazilian state and city. Analysis of the predicted new cases was correlated with the total number of hospitalizations and deaths related to COVID-19. Because Brazil is a vast country, with high heterogeneity and complexity of the regional/local characteristics and governmental authorities among Brazilian states and cities, we individually predicted the epidemic curve based on a specific stable period with reduced or minimal interference on the growth rate of new cases. We found good accuracy, mainly in a short period (weeks). The most critical governmental decisions had a significant temporal impact on pandemic curve growth. A good relationship was found between the predicted number of new cases and the total number of inpatients and deaths related to COVID-19. In summary, we demonstrated that interventional and preventive measures directly and significantly impact the COVID-19 pandemic using a simple mathematical model. This model can easily be applied, helping, and directing health and governmental authorities to make further decisions to combat the pandemic.

COVID-19/epidemiology , Brazil/epidemiology , COVID-19/transmission , Cities/epidemiology , Humans , Models, Statistical , Pandemics , SARS-CoV-2/isolation & purification , Time Factors
Trends Microbiol ; 29(2): 92-97, 2021 02.
Article in English | MEDLINE | ID: covidwho-957434


Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.

Biomedical Research/organization & administration , COVID-19/virology , SARS-CoV-2/physiology , Communication , Europe , Humans , Laboratory Personnel , Pandemics , SARS-CoV-2/genetics