Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Crit Care ; 69: 154022, 2022 06.
Article in English | MEDLINE | ID: covidwho-1768292

ABSTRACT

PURPOSE: We determined the incidence of hypercapnia and associations with outcome in invasively ventilated COVID-19 patients. METHODS: Posthoc analysis of a national, multicenter, observational study in 22 ICUs. Patients were classified as 'hypercapnic' or 'normocapnic' in the first three days of invasive ventilation. Primary endpoint was prevalence of hypercapnia. Secondary endpoints were ventilator parameters, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, at day 28 and 90. RESULTS: Of 824 patients, 485 (58.9%) were hypercapnic. Hypercapnic patients had a higher BMI and had COPD, severe ARDS and venous thromboembolic events more often. Hypercapnic patients were ventilated with lower tidal volumes, higher respiratory rates, higher driving pressures, and with more mechanical power of ventilation. Hypercapnic patients had comparable minute volumes but higher ventilatory ratios than normocapnic patients. In hypercapnic patients, ventilation and LOS in ICU and hospital was longer, but mortality was comparable to normocapnic patients. CONCLUSION: Hypercapnia occurs often in invasively ventilated COVID-19 patients. Main differences between hypercapnic and normocapnic patients are severity of ARDS, occurrence of venous thromboembolic events, and a higher ventilation ratio. Hypercapnia has an association with duration of ventilation and LOS in ICU and hospital, but not with mortality.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Humans , Hypercapnia , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/etiology
2.
Eur J Anaesthesiol ; 38(12): 1274-1283, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1700154

ABSTRACT

BACKGROUND: There is uncertainty about how much positive end-expiratory pressure (PEEP) should be used in patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). OBJECTIVE: To investigate whether a higher PEEP strategy is superior to a lower PEEP strategy regarding the number of ventilator-free days (VFDs). DESIGN: Multicentre observational study conducted from 1 March to 1 June 2020. SETTING AND PATIENTS: Twenty-two ICUs in The Netherlands and 933 invasively ventilated COVID-19 ARDS patients. INTERVENTIONS: Patients were categorised retrospectively as having received invasive ventilation with higher (n=259) or lower PEEP (n=674), based on the high and low PEEP/FiO2 tables of the ARDS Network, and using ventilator settings and parameters in the first hour of invasive ventilation, and every 8 h thereafter at fixed time points during the first four calendar days. We also used propensity score matching to control for observed confounding factors that might influence outcomes. MAIN OUTCOMES AND MEASURES: The primary outcome was the number of VFDs. Secondary outcomes included distant organ failures including acute kidney injury (AKI) and use of renal replacement therapy (RRT), and mortality. RESULTS: In the unmatched cohort, the higher PEEP strategy had no association with the median [IQR] number of VFDs (2.0 [0.0 to 15.0] vs. 0.0 [0.0 to 16.0] days). The median (95% confidence interval) difference was 0.21 (-3.34 to 3.78) days, P = 0.905. In the matched cohort, the higher PEEP group had an association with a lower median number of VFDs (0.0 [0.0 to 14.0] vs. 6.0 [0.0 to 17.0] days) a median difference of -4.65 (-8.92 to -0.39) days, P = 0.032. The higher PEEP strategy had associations with higher incidence of AKI (in the matched cohort) and more use of RRT (in the unmatched and matched cohorts). The higher PEEP strategy had no association with mortality. CONCLUSION: In COVID-19 ARDS, use of higher PEEP may be associated with a lower number of VFDs, and may increase the incidence of AKI and need for RRT. TRIAL REGISTRATION: Practice of VENTilation in COVID-19 is registered at ClinicalTrials.gov, NCT04346342.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2 , Ventilators, Mechanical
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317368

ABSTRACT

Background: Surrogates for impaired ventilation such as estimated dead-space fractions and the ventilatory ratio have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19 related ARDS. Methods: : Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicentre, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of impaired ventilation patients with COVID-19 related ARDS. Results: : 927 consecutive patients admitted with COVID-19 related ARDS were included in this study. Surrogates of impaired ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p <0.001). The end-tidal-to-arterial PCO 2 ratio was lower in non-survivors than in survivors (p<0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and for the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO 2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the surrogates of impaired ventilation measured at the start of ventilation or the following days were significantly associated with 28-day mortality. Conclusions: : There is significant impairment of ventilation in the early course of COVID-19 related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk-model.

4.
J Clin Med ; 10(22)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1524047

ABSTRACT

Driving pressure (ΔP) and mechanical power (MP) are associated with outcomes in critically ill patients, irrespective of the presence of Acute Respiratory Distress Syndrome (ARDS). INTELLiVENT-ASV, a fully automated ventilatory mode, controls the settings that affect ΔP and MP. This study compared the intensity of ventilation (ΔP and MP) with INTELLiVENT-ASV versus conventional ventilation in a cohort of COVID-19 ARDS patients in two intensive care units in the Netherlands. The coprimary endpoints were ΔP and MP before and after converting from conventional ventilation to INTELLiVENT-ASV. Compared to conventional ventilation, INTELLiVENT-ASV delivered ventilation with a lower ΔP and less MP. With conventional ventilation, ΔP was 13 cmH2O, and MP was 21.5 and 24.8 J/min, whereas with INTELLiVENT-ASV, ΔP was 11 and 10 cmH2O (mean difference -2 cm H2O (95 %CI -2.5 to -1.2 cm H2O), p < 0.001) and MP was 18.8 and 17.5 J/min (mean difference -7.3 J/Min (95% CI -8.8 to -5.8 J/min), p < 0.001). Conversion from conventional ventilation to INTELLiVENT-ASV resulted in a lower intensity of ventilation. These findings may favor the use of INTELLiVENT-ASV in COVID-19 ARDS patients, but future studies remain needed to see if the reduction in the intensity of ventilation translates into clinical benefits.

5.
Lancet Respir Med ; 9(12): 1377-1386, 2021 12.
Article in English | MEDLINE | ID: covidwho-1466986

ABSTRACT

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) have been postulated to present with distinct respiratory subphenotypes. However, most phenotyping schema have been limited by sample size, disregard for temporal dynamics, and insufficient validation. We aimed to identify respiratory subphenotypes of COVID-19-related ARDS using unbiased data-driven approaches. METHODS: PRoVENT-COVID was an investigator-initiated, national, multicentre, prospective, observational cohort study at 22 intensive care units (ICUs) in the Netherlands. Consecutive patients who had received invasive mechanical ventilation for COVID-19 (aged 18 years or older) served as the derivation cohort, and similar patients from two ICUs in the USA served as the replication cohorts. COVID-19 was confirmed by positive RT-PCR. We used latent class analysis to identify subphenotypes using clinically available respiratory data cross-sectionally at baseline, and longitudinally using 8-hourly data from the first 4 days of invasive ventilation. We used group-based trajectory modelling to evaluate trajectories of individual variables and to facilitate potential clinical translation. The PRoVENT-COVID study is registered with ClinicalTrials.gov, NCT04346342. FINDINGS: Between March 1, 2020, and May 15, 2020, 1007 patients were admitted to participating ICUs in the Netherlands, and included in the derivation cohort. Data for 288 patients were included in replication cohort 1 and 326 in replication cohort 2. Cross-sectional latent class analysis did not identify any underlying subphenotypes. Longitudinal latent class analysis identified two distinct subphenotypes. Subphenotype 2 was characterised by higher mechanical power, minute ventilation, and ventilatory ratio over the first 4 days of invasive mechanical ventilation than subphenotype 1, but PaO2/FiO2, pH, and compliance of the respiratory system did not differ between the two subphenotypes. 185 (28%) of 671 patients with subphenotype 1 and 109 (32%) of 336 patients with subphenotype 2 had died at day 28 (p=0·10). However, patients with subphenotype 2 had fewer ventilator-free days at day 28 (median 0, IQR 0-15 vs 5, 0-17; p=0·016) and more frequent venous thrombotic events (109 [32%] of 336 patients vs 176 [26%] of 671 patients; p=0·048) compared with subphenotype 1. Group-based trajectory modelling revealed trajectories of ventilatory ratio and mechanical power with similar dynamics to those observed in latent class analysis-derived trajectory subphenotypes. The two trajectories were: a stable value for ventilatory ratio or mechanical power over the first 4 days of invasive mechanical ventilation (trajectory A) or an upward trajectory (trajectory B). However, upward trajectories were better independent prognosticators for 28-day mortality (OR 1·64, 95% CI 1·17-2·29 for ventilatory ratio; 1·82, 1·24-2·66 for mechanical power). The association between upward ventilatory ratio trajectories (trajectory B) and 28-day mortality was confirmed in the replication cohorts (OR 4·65, 95% CI 1·87-11·6 for ventilatory ratio in replication cohort 1; 1·89, 1·05-3·37 for ventilatory ratio in replication cohort 2). INTERPRETATION: At baseline, COVID-19-related ARDS has no consistent respiratory subphenotype. Patients diverged from a fairly homogenous to a more heterogeneous population, with trajectories of ventilatory ratio and mechanical power being the most discriminatory. Modelling these parameters alone provided prognostic value for duration of mechanical ventilation and mortality. FUNDING: Amsterdam UMC.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Aged , COVID-19/complications , Cross-Sectional Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Netherlands , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , SARS-CoV-2
6.
Eur J Anaesthesiol ; 38(12): 1274-1283, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1303952

ABSTRACT

BACKGROUND: There is uncertainty about how much positive end-expiratory pressure (PEEP) should be used in patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). OBJECTIVE: To investigate whether a higher PEEP strategy is superior to a lower PEEP strategy regarding the number of ventilator-free days (VFDs). DESIGN: Multicentre observational study conducted from 1 March to 1 June 2020. SETTING AND PATIENTS: Twenty-two ICUs in The Netherlands and 933 invasively ventilated COVID-19 ARDS patients. INTERVENTIONS: Patients were categorised retrospectively as having received invasive ventilation with higher (n=259) or lower PEEP (n=674), based on the high and low PEEP/FiO2 tables of the ARDS Network, and using ventilator settings and parameters in the first hour of invasive ventilation, and every 8 h thereafter at fixed time points during the first four calendar days. We also used propensity score matching to control for observed confounding factors that might influence outcomes. MAIN OUTCOMES AND MEASURES: The primary outcome was the number of VFDs. Secondary outcomes included distant organ failures including acute kidney injury (AKI) and use of renal replacement therapy (RRT), and mortality. RESULTS: In the unmatched cohort, the higher PEEP strategy had no association with the median [IQR] number of VFDs (2.0 [0.0 to 15.0] vs. 0.0 [0.0 to 16.0] days). The median (95% confidence interval) difference was 0.21 (-3.34 to 3.78) days, P = 0.905. In the matched cohort, the higher PEEP group had an association with a lower median number of VFDs (0.0 [0.0 to 14.0] vs. 6.0 [0.0 to 17.0] days) a median difference of -4.65 (-8.92 to -0.39) days, P = 0.032. The higher PEEP strategy had associations with higher incidence of AKI (in the matched cohort) and more use of RRT (in the unmatched and matched cohorts). The higher PEEP strategy had no association with mortality. CONCLUSION: In COVID-19 ARDS, use of higher PEEP may be associated with a lower number of VFDs, and may increase the incidence of AKI and need for RRT. TRIAL REGISTRATION: Practice of VENTilation in COVID-19 is registered at ClinicalTrials.gov, NCT04346342.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2 , Ventilators, Mechanical
7.
Ann Transl Med ; 9(9): 813, 2021 May.
Article in English | MEDLINE | ID: covidwho-1257379

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) may need hospitalization for supplemental oxygen, and some need intensive care unit (ICU) admission for escalation of care. Practice of adjunctive and supportive treatments remain uncertain and may vary widely between countries, within countries between hospitals, and possibly even within ICUs. We aim to investigate practice of adjunctive and supportive treatments, and their associations with outcome, in critically ill COVID-19 patients. METHODS: The 'PRactice of Adjunctive Treatments in Intensive Care Unit Patients with Coronavirus Disease 2019' (PRoAcT-COVID) study is a national, observational study to be undertaken in a large set of ICUs in The Netherlands. The PRoAcT-COVID includes consecutive ICU patients, admitted because of COVID-19 to one of the participating ICUs during a 3-month period. Daily follow-up lasts 28 days. The primary endpoint is a combination of adjunctive treatments, including types of oxygen support, ventilation, rescue therapies for hypoxemia refractory to supplementary oxygen or during invasive ventilation, other adjunctive and supportive treatments, and experimental therapies. We will also collect tracheostomy rate, duration of invasive ventilation and ventilator-free days and alive at day 28 (VFD-28), ICU and hospital length of stay, and the mortality rates in the ICU, hospital and at day 90. DISCUSSION: The PRoAcT-COVID study is an observational study combining high density treatment data with relevant clinical outcomes. Information on treatment practices, and their associations with outcomes in COVID-19 patients in highly and urgently needed. The results of the PRoAcT-COVID study will be rapidly available, and circulated through online presentations, such as webinars and electronic conferences, and publications in peer-reviewed journals-findings will also be presented at a dedicated website. At request, and after agreement of the PRoAcT-COVID steering committee, source data will be made available through local, regional and national anonymized datasets. TRIAL REGISTRATION: The PRoAcT-COVID study is registered at clinicaltrials.gov (study identifier NCT04719182).

8.
Crit Care ; 25(1): 171, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232432

ABSTRACT

BACKGROUND: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS. METHODS: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS. RESULTS: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality. CONCLUSIONS: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model. TRIAL REGISTRATION: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.


Subject(s)
COVID-19/mortality , Patient Acuity , Respiration, Artificial , Respiratory Dead Space , Respiratory Distress Syndrome/therapy , Adult , Biomarkers , COVID-19/complications , COVID-19/physiopathology , Female , Humans , Intensive Care Units , Male , Prognosis , ROC Curve , Respiratory Distress Syndrome/etiology , Respiratory Function Tests , Respiratory Mechanics , Retrospective Studies
9.
Lancet Respir Med ; 9(2): 139-148, 2021 02.
Article in English | MEDLINE | ID: covidwho-1199179

ABSTRACT

BACKGROUND: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak. METHODS: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342). FINDINGS: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7-7·1), PEEP was 14·0 cm H2O (IQR 11·0-15·0), and driving pressure was 14·0 cm H2O (11·2-16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0-39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. INTERPRETATION: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. FUNDING: Amsterdam University Medical Centers, location Academic Medical Center.


Subject(s)
COVID-19/therapy , Respiration, Artificial , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Netherlands , Retrospective Studies , Treatment Outcome
10.
Expert Rev Respir Med ; 15(8): 1013-1023, 2021 08.
Article in English | MEDLINE | ID: covidwho-1180435

ABSTRACT

INTRODUCTION: It is uncertain whether ventilation in patients with acute respiratory failure related to coronavirus disease 2019 (COVID-19) differs from that in patients with acute respiratory distress syndrome (ARDS) from another origin. AREAS COVERED: We undertook two literature searches in PubMed to identify observational studies reporting on ventilation management--one in patients with acute respiratory failure related to COVID-19, and one in patients with ARDS from another origin. The searches identified 14 studies in patients with acute respiratory failure related to COVID-19, and 8 studies in patients with ARDS from another origin. EXPERT OPINION: In patients with acute respiratory failure related to COVID-19, ventilation management seems to be similar to that of patients with ARDS from another origin. The future lies in studies focused on personalized treatment of ARDS of all origins, including COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Lung , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , SARS-CoV-2
11.
Lancet Respir Med ; 9(2): 139-148, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065695

ABSTRACT

BACKGROUND: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak. METHODS: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342). FINDINGS: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7-7·1), PEEP was 14·0 cm H2O (IQR 11·0-15·0), and driving pressure was 14·0 cm H2O (11·2-16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0-39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. INTERPRETATION: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. FUNDING: Amsterdam University Medical Centers, location Academic Medical Center.


Subject(s)
COVID-19/therapy , Respiration, Artificial , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Netherlands , Retrospective Studies , Treatment Outcome
12.
Ann Transl Med ; 8(19): 1251, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-994852

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is rapidly expanding across the world, with more than 100,000 new cases each day as of end-June 2020. Healthcare workers are struggling to provide the best care for COVID-19 patients. Approaches for invasive ventilation vary widely between and within countries and new insights are acquired rapidly. We aim to investigate invasive ventilation practices and outcome in COVID-19 patients in the Netherlands. METHODS: PRoVENT-COVID ('study of PRactice of VENTilation in COVID-19') is an investigator-initiated national, multicenter observational study to be undertaken in intensive care units (ICUs) in The Netherlands. Consecutive COVID-19 patients aged 18 years or older, who are receiving invasive ventilation in the participating ICUs, are to be enrolled during a 10-week period, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cmH2O) during the first 3 days of ventilation. Secondary outcomes include other ventilatory variables, use of rescue therapies for refractory hypoxemia such as prone positioning and extracorporeal membrane oxygenation, use of sedatives, vasopressors and inotropes; daily cumulative fluid balances; acute kidney injury; ventilator-free days and alive at day 28 (VFD-28), duration of ICU and hospital stay, and ICU, hospital and 90-day mortality. DISCUSSION: PRoVENT-COVID will be the largest observational study to date, with high density ventilatory data and major outcomes. There is urgent need for a better understanding of ventilation practices, and the effects of ventilator settings on outcomes in COVID-19 patients. The results of PRoVENT-COVID will be rapidly disseminated through electronic presentations, such as webinars and electronic conferences, and publications in international peer-reviewed journals. Access to source data will be made available through local, regional and national anonymized datasets on request, and after agreement of the PRoVENT-COVID steering committee. TRIAL REGISTRATION: PRoVENT-COVID is registered at clinicaltrials.gov (identifier NCT04346342).

SELECTION OF CITATIONS
SEARCH DETAIL