Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Clin Microbiol ; 60(4): e0229821, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1759280

ABSTRACT

Critically ill patients with coronavirus disease 2019 (COVID-19) may develop COVID-19-associated pulmonary aspergillosis (CAPA), which impacts their chances of survival. Whether positive bronchoalveolar lavage fluid (BALF) mycological tests can be used as a survival proxy remains unknown. We conducted a post hoc analysis of a previous multicenter, multinational observational study with the aim of assessing the differential prognostic impact of BALF mycological tests, namely, positive (optical density index of ≥1.0) BALF galactomannan (GM) and positive BALF Aspergillus culture alone or in combination for critically ill patients with COVID-19. Of the 592 critically ill patients with COVID-19 enrolled in the main study, 218 were included in this post hoc analysis, as they had both test results available. CAPA was diagnosed in 56/218 patients (26%). Most cases were probable CAPA (51/56 [91%]) and fewer were proven CAPA (5/56 [9%]). In the final multivariable model adjusted for between-center heterogeneity, an independent association with 90-day mortality was observed for the combination of positive BALF GM and positive BALF Aspergillus culture in comparison with both tests negative (hazard ratio, 2.53; 95% CI confidence interval [CI], 1.28 to 5.02; P = 0.008). The other independent predictors of 90-day mortality were increasing age and active malignant disease. In conclusion, the combination of positive BALF GM and positive BALF Aspergillus culture was associated with increased 90-day mortality in critically ill patients with COVID-19. Additional study is needed to explore the possible prognostic value of other BALF markers.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aspergillus , Bronchoalveolar Lavage Fluid , COVID-19/complications , Critical Illness , Galactose/analogs & derivatives , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Mannans , Mycology , Prognosis , Sensitivity and Specificity
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310500

ABSTRACT

Background: Zoonotic coronaviruses have repeatedly taken the spotlight leading to severe global epidemics over the last two decades. In addition, seasonal coronaviruses (sCoVs) broadly circulate in humans. Their epidemiology could have broad impacts on the spread of emerging coronaviruses, but has been neglected so far.Methods: Clinical samples and data were collected from hospitalized patients with severe acute respiratory infection (SARI) and primary care patients with influenza-like illness (ILI), recruited through the national influenza surveillance networks in Belgium. Multiplex RT-qPCRs for respiratory viruses, including sCoVs OC43, NL63 and 229E, and SARS-CoV-2 were performed. Incidence rates of sCoV infection between 2015-2020 were estimated by season and age group. The impact of co-infections and comorbidities on the outcome of hospitalized patients was assessed.Findings: Hospitalized children under five carry the highest burden of disease for OC43 (IR =9·0, 95%CI 7·2-11·2 per 100,000 person-months) and NL63 (IR=5·2, 95%CI 3·9-6·9 per 100,000 person-months), while adults over 65 carry the highest burden of disease for 229E (IR=1·7, 95%CI 1·3-2·2 per 100,000 person-months). In hospitalized children under five, complications were associated with co-infections (p=0·02). Overall, comorbidities were strongly associated with a severe outcome following sCoV infection (p=0·006). In early March 2020, the SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case without travel history to China. The ILI surveillance system captured two peaks in the number of primary care visits at weeks five (influenza) and 12 (SARS-CoV-2).Interpretation: We show that sCoVs can cause severe complications and death, especially in combination with pre-existing comorbidities and/or co-infections. Furthermore, we encourage the leverage of national influenza surveillance systems for early detection and monitoring of emerging coronaviruses such as SARS-CoV-2.Funding: Federal Public Service ‘Health, Food Chain Safety, and Environment’, National Insurance Health Care (INAMI/RIZIV), Regional Health Authorities (Flanders: AZG, Brussels: COCOM, Wallonia: AVIQ).Declaration of Interests: The authors declare no conflict of interest.Ethics Approval Statement: The study surveillance protocol was approved by a central Ethical Committee (reference AK/12-02- 11/4111;in 2011: Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium;since 2014: Universitair Ziekenhuis Vrije Universiteit Brussel, Brussels, Belgium) and the local ethical committees of each participating hospital. Informed consent was obtained from all participants or parents/guardians.

3.
Emerg Infect Dis ; 27(11): 2892-2898, 2021 11.
Article in English | MEDLINE | ID: covidwho-1551452

ABSTRACT

We performed an observational study to investigate intensive care unit incidence, risk factors, and outcomes of coronavirus disease-associated pulmonary aspergillosis (CAPA). We found 10%-15% CAPA incidence among 823 patients in 2 cohorts. Several factors were independently associated with CAPA in 1 cohort and mortality rates were 43%-52%.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Cohort Studies , Humans , SARS-CoV-2
4.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1549679

ABSTRACT

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Subject(s)
Autopsy/methods , COVID-19/mortality , COVID-19/virology , Olfactory Bulb/virology , Olfactory Mucosa/virology , Respiratory Mucosa/virology , Aged , Anosmia , COVID-19/physiopathology , Endoscopy/methods , Female , Glucuronosyltransferase/biosynthesis , Humans , Immunohistochemistry , In Situ Hybridization , Male , Microscopy, Fluorescence , Middle Aged , Olfaction Disorders , Olfactory Receptor Neurons/metabolism , Respiratory System , SARS-CoV-2 , Smell
5.
Emerg Infect Dis ; 27(11): 2892-2898, 2021 11.
Article in English | MEDLINE | ID: covidwho-1406813

ABSTRACT

We performed an observational study to investigate intensive care unit incidence, risk factors, and outcomes of coronavirus disease-associated pulmonary aspergillosis (CAPA). We found 10%-15% CAPA incidence among 823 patients in 2 cohorts. Several factors were independently associated with CAPA in 1 cohort and mortality rates were 43%-52%.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Cohort Studies , Humans , SARS-CoV-2
6.
Clin Microbiol Infect ; 28(4): 580-587, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1375916

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 (COVID-19) -associated pulmonary aspergillosis (CAPA) has emerged as a complication in critically ill COVID-19 patients. The objectives of this multinational study were to determine the prevalence of CAPA in patients with COVID-19 in intensive care units (ICU) and to investigate risk factors for CAPA as well as outcome. METHODS: The European Confederation of Medical Mycology (ECMM) conducted a multinational study including 20 centres from nine countries to assess epidemiology, risk factors and outcome of CAPA. CAPA was defined according to the 2020 ECMM/ISHAM consensus definitions. RESULTS: A total of 592 patients were included in this study, including 11 (1.9%) patients with histologically proven CAPA, 80 (13.5%) with probable CAPA, 18 (3%) with possible CAPA and 483 (81.6%) without CAPA. CAPA was diagnosed a median of 8 days (range 0-31 days) after ICU admission predominantly in older patients (adjusted hazard ratio (aHR) 1.04 per year; 95% CI 1.02-1.06) with any form of invasive respiratory support (HR 3.4; 95% CI 1.84-6.25) and receiving tocilizumab (HR 2.45; 95% CI 1.41-4.25). Median prevalence of CAPA per centre was 10.7% (range 1.7%-26.8%). CAPA was associated with significantly lower 90-day ICU survival rate (29% in patients with CAPA versus 57% in patients without CAPA; Mantel-Byar p < 0.001) and remained an independent negative prognostic variable after adjusting for other predictors of survival (HR 2.14; 95% CI 1.59-2.87, p ≤ 0.001). CONCLUSION: Prevalence of CAPA varied between centres. CAPA was significantly more prevalent among older patients, patients receiving invasive ventilation and patients receiving tocilizumab, and was an independent strong predictor of ICU mortality.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aged , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Critical Illness , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , Mycology , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/epidemiology , Risk Factors , SARS-CoV-2
7.
Lancet Microbe ; 2(3): e105-e114, 2021 03.
Article in English | MEDLINE | ID: covidwho-1152746

ABSTRACT

BACKGROUND: Seasonal human coronaviruses (hCoVs) broadly circulate in humans. Their epidemiology and effect on the spread of emerging coronaviruses has been neglected thus far. We aimed to elucidate the epidemiology and burden of disease of seasonal hCoVs OC43, NL63, and 229E in patients in primary care and hospitals in Belgium between 2015 and 2020. METHODS: We retrospectively analysed data from the national influenza surveillance networks in Belgium during the winter seasons of 2015-20. Respiratory specimens were collected through the severe acute respiratory infection (SARI) and the influenza-like illness networks from patients with acute respiratory illness with onset within the previous 10 days, with measured or reported fever of 38°C or greater, cough, or dyspnoea; and for patients admitted to hospital for at least one night. Potential risk factors were recorded and patients who were admitted to hospital were followed up for the occurrence of complications or death for the length of their hospital stay. All samples were analysed by multiplex quantitative RT-PCRs for respiratory viruses, including seasonal hCoVs OC43, NL63, and 229E. We estimated the prevalence and incidence of seasonal hCoV infection, with or without co-infection with other respiratory viruses. We evaluated the association between co-infections and potential risk factors with complications or death in patients admitted to hospital with seasonal hCoV infections by age group. Samples received from week 8, 2020, were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). FINDINGS: 2573 primary care and 6494 hospital samples were included in the study. 161 (6·3%) of 2573 patients in primary care and 371 (5·7%) of 6494 patients admitted to hospital were infected with a seasonal hCoV. OC43 was the seasonal hCoV with the highest prevalence across age groups and highest incidence in children admitted to hospital who were younger than 5 years (incidence 9·0 [95% CI 7·2-11·2] per 100 000 person-months) and adults older than 65 years (2·6 [2·1-3·2] per 100 000 person-months). Among 262 patients admitted to hospital with seasonal hCoV infection and with complete information on potential risk factors, 66 (73·3%) of 90 patients who had complications or died also had at least one potential risk factor (p=0·0064). Complications in children younger than 5 years were associated with co-infection (24 [36·4%] of 66; p=0·017), and in teenagers and adults (≥15 years), more complications arose in patients with a single hCoV infection (49 [45·0%] of 109; p=0·0097). In early 2020, the Belgian SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case with no travel history to China. INTERPRETATION: The main burden of severe seasonal hCoV infection lies with children younger than 5 years with co-infections and adults aged 65 years and older with pre-existing comorbidities. These age and patient groups should be targeted for enhanced observation when in medical care and in possible future vaccination strategies, and co-infections in children younger than 5 years should be considered during diagnosis and treatment. Our findings support the use of national influenza surveillance systems for seasonal hCoV monitoring and early detection, and monitoring of emerging coronaviruses such as SARS-CoV-2. FUNDING: Belgian Federal Public Service Health, Food Chain Safety, and Environment; Belgian National Insurance Health Care (Institut national d'assurance maladie-invalidité/Rijksinstituut voor ziekte-en invaliditeitsverzekering); and Regional Health Authorities (Flanders Agentschap zorg en gezondheid, Brussels Commission communautaire commune, Wallonia Agence pour une vie de qualité).


Subject(s)
COVID-19 , Coinfection , Coronavirus OC43, Human , Influenza, Human , Adolescent , Adult , Belgium/epidemiology , COVID-19/epidemiology , Child , Coinfection/epidemiology , Hospitals , Humans , Influenza, Human/epidemiology , Primary Health Care , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL