Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Preprint in English | EuropePMC | ID: ppcovidwho-294311


For many diseases, including cancer, viral infections such as COVID-19, bacterial infections, and auto-immune diseases, the immune response is a major determinant of progression, response to therapy, and clinical outcome. Innate and adaptive immune response are controlled by coordinated activity of multiple immune cell types. The functional activity state of immune cells is determined by cellular signal transduction pathways (STPs). A novel mRNA-based signaling pathway assay platform has been developed to quantitatively measure relevant STP activities in all types of immune cells and mixed immune cell samples for experimental and diagnostic purposes. We generated a STP activity profile, termed Immune-Pathway Activity Profile (I-PAP), for a variety of immune cell types in resting and activated state, and provide a first example for use in patient samples. Methods The technology to measure STP activity has been described for androgen and estrogen receptor, PI3K, MAPK, TGFβ, Notch, NFκB, JAK-STAT1/2, and JAK-STAT3 pathways. STP activity was measured on Affymetrix expression microarray data from preclinical studies containing public data from different types of immune cells, resting/naïve or immune-activated in vitro , to establish I-PAPs. Subsequently data from a clinical study on rheumatoid arthritis were analyzed. Results I-PAPs of naïve/resting and immune-activated CD4+ and CD8+ T cells, T helper cells, B cells, NK cells, monocytes, macrophages, and dendritic cells were established and in agreement with known experimental immunobiology. In whole blood samples of rheumatoid arthritis patients TGFβ pathway activity was increased;JAK-STAT3 pathway activity was selectively increased in female patients. In naïve CD4+ Tregs TGFβ pathway activity was increased, while in memory T effector cells JAK-STAT3 pathway activity tended to increase, suggesting that these immune cell types contributed to whole blood analysis results. Conclusion STP assay technology (currently being converted to qPCR-based assays) makes it possible to directly measure functional activity of cells of the innate and adaptive immune response enabling quantitative assessment of the immune response of an individual patient. Envisioned utility lies in (1) prediction and monitoring of response to immunomodulatory treatments for a variety of immune-mediated diseases, including RA;(2) uncovering novel treatment targets;(3) improvement and standardization of in vitro immunology research and drug development.

Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374


Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.

Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity