Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Lancet Healthy Longev ; 3(1): e2-e3, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1586148
3.
Open Forum Infect Dis ; 8(11): ofab533, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1528174

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has potentially impacted outpatient antibiotic prescribing. Investigating this impact may identify stewardship opportunities in the ongoing COVID-19 period and beyond. Methods: We conducted an interrupted time series analysis on outpatient antibiotic prescriptions and antibiotic prescriptions/patient visits in Ontario, Canada, between January 2017 and December 2020 to evaluate the impact of the COVID-19 pandemic on population-level antibiotic prescribing by prescriber specialty, patient demographics, and conditions. Results: In the evaluated COVID-19 period (March-December 2020), there was a 31.2% (95% CI, 27.0% to 35.1%) relative reduction in total antibiotic prescriptions. Total outpatient antibiotic prescriptions decreased during the COVID-19 period by 37.1% (95% CI, 32.5% to 41.3%) among family physicians, 30.7% (95% CI, 25.8% to 35.2%) among subspecialist physicians, 12.1% (95% CI, 4.4% to 19.2%) among dentists, and 25.7% (95% CI, 21.4% to 29.8%) among other prescribers. Antibiotics indicated for respiratory infections decreased by 43.7% (95% CI, 38.4% to 48.6%). Total patient visits and visits for respiratory infections decreased by 10.7% (95% CI, 5.4% to 15.6%) and 49.9% (95% CI, 43.1% to 55.9%). Total antibiotic prescriptions/1000 visits decreased by 27.5% (95% CI, 21.5% to 33.0%), while antibiotics indicated for respiratory infections/1000 visits with respiratory infections only decreased by 6.8% (95% CI, 2.7% to 10.8%). Conclusions: The reduction in outpatient antibiotic prescribing during the COVID-19 pandemic was driven by less antibiotic prescribing for respiratory indications and largely explained by decreased visits for respiratory infections.

4.
Viruses ; 13(11)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1512696

ABSTRACT

Survivors of severe SARS-CoV-2 infections frequently suffer from a range of post-infection sequelae. Whether survivors of mild or asymptomatic infections can expect any long-term health consequences is not yet known. Herein we investigated lasting changes to soluble inflammatory factors and cellular immune phenotype and function in individuals who had recovered from mild SARS-CoV-2 infections (n = 22), compared to those that had recovered from other mild respiratory infections (n = 11). Individuals who had experienced mild SARS-CoV-2 infections had elevated levels of C-reactive protein 1-3 months after symptom onset, and changes in phenotype and function of circulating T-cells that were not apparent in individuals 6-9 months post-symptom onset. Markers of monocyte activation, and expression of adherence and chemokine receptors indicative of altered migratory capacity, were also higher at 1-3 months post-infection in individuals who had mild SARS-CoV-2, but these were no longer elevated by 6-9 months post-infection. Perhaps most surprisingly, significantly more T-cells could be activated by polyclonal stimulation in individuals who had recently experienced a mild SARS-CoV-2, infection compared to individuals with other recent respiratory infections. These data are indicative of prolonged immune activation and systemic inflammation that persists for at least three months after mild or asymptomatic SARS-CoV-2 infections.

6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1285962

ABSTRACT

IgA is the second most abundant antibody present in circulation and is enriched at mucosal surfaces. As such, IgA plays a key role in protection against a variety of mucosal pathogens including viruses. In addition to neutralizing viruses directly, IgA can also stimulate Fc-dependent effector functions via engagement of Fc alpha receptors (Fc-αRI) expressed on the surface of certain immune effector cells. Neutrophils are the most abundant leukocyte, express Fc-αRI, and are often the first to respond to sites of injury and infection. Here, we describe a function for IgA-virus immune complexes (ICs) during viral infections. We show that IgA-virus ICs potentiate NETosis-the programmed cell-death pathway through which neutrophils release neutrophil extracellular traps (NETs). Mechanistically, IgA-virus ICs potentiated a suicidal NETosis pathway via engagement of Fc-αRI on neutrophils through a toll-like receptor-independent, NADPH oxidase complex-dependent pathway. NETs also were capable of trapping and inactivating viruses, consistent with an antiviral function.


Subject(s)
Extracellular Traps/immunology , Immunoglobulin A/immunology , Neutrophils/immunology , Virus Diseases/immunology , Antigen-Antibody Complex/immunology , Antigens, CD/metabolism , Extracellular Traps/virology , Humans , Influenzavirus A/immunology , NADPH Oxidases/metabolism , Neutrophils/pathology , Neutrophils/virology , Receptors, Fc/metabolism , SARS-CoV-2/immunology , Signal Transduction , Virion
7.
Clin Infect Dis ; 72(9): 1657-1659, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216612

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic and antimicrobial resistance (AMR) are parallel and interacting health emergencies that provide the opportunity for mutual learning. As their measures and consequences are comparable, the COVID-19 pandemic helps to illustrate the potential long-term impact of AMR, which is less acute but not less crucial. They may also impact each other as there is a push to use existing antimicrobials to treat critically ill COVID-19 patients in the absence of specific treatments. Attempts to manage the spread of COVID-19 may also lead to a slowdown in AMR. Understanding how COVID-19 affects AMR trends and what we can expect if these trends remain the same or worsen will help us to plan the next steps for tackling AMR. Researchers should start collecting data to measure the impact of current COVID-19 policies and programs on AMR.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Emergencies , Humans , Pandemics , SARS-CoV-2
8.
Viruses ; 13(4)2021 04 16.
Article in English | MEDLINE | ID: covidwho-1194709

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is a global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While detection of SARS-CoV-2 by polymerase chain reaction with reverse transcription (RT-PCR) is currently used to diagnose acute COVID-19 infection, serological assays are needed to study the humoral immune response to SARS-CoV-2. Anti-SARS-CoV-2 immunoglobulin (Ig)G/A/M antibodies against spike (S) protein and its receptor-binding domain (RBD) were characterized in recovered subjects who were RT-PCR-positive (n = 153) and RT-PCR-negative (n = 55) using an enzyme-linked immunosorbent assay (ELISA). These antibodies were also further assessed for their ability to neutralize live SARS-CoV-2 virus. Anti-SARS-CoV-2 antibodies were detected in 90.9% of resolved subjects up to 180 days post-symptom onset. Anti-S protein and anti-RBD IgG titers correlated (r = 0.5157 and r = 0.6010, respectively) with viral neutralization. Of the RT-PCR-positive subjects, 22 (14.3%) did not have anti-SARS-CoV-2 antibodies; and of those, 17 had RT-PCR cycle threshold (Ct) values > 27. These high Ct values raise the possibility that these indeterminate results are from individuals who were not infected or had mild infection that failed to elicit an antibody response. This study highlights the importance of serological surveys to determine population-level immunity based on infection numbers as determined by RT-PCR.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Female , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...