Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell Reports ; : 111220, 2022.
Article in English | ScienceDirect | ID: covidwho-1966425

ABSTRACT

Summary SARS-CoV-2 spike N-Terminal Domain (NTD) remains poorly characterised despite enrichment of mutations in this region across variants of concern (VOC). Here, we examine the contribution of the NTD to infection and cell-cell fusion by constructing chimeric spikes bearing B.1.617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus. We find that the Delta NTD on a Kappa or WT background increases S1/S2 cleavage efficiency and virus entry, specifically in lung cells and airway organoids, through use of TMPRSS2. Delta exhibits increased cell-cell fusogenicity that could be conferred to WT and Kappa spikes by Delta NTD transfer. However, chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD do not show more efficient TMPRSS2 use or fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions in a spike context-dependent manner, and allosteric interactions may be lost when combining regions from more distantly related VOC.

4.
EBioMedicine ; 81: 104129, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906949

ABSTRACT

BACKGROUND: There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative. METHODS: Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients. FINDINGS: We discovered that IL-2 release (but not IFN-γ release) from T cells in response to SARS-CoV-2 peptides is both sensitive (75% +/-13%) and specific (88%+/-7%) for previous SARS-CoV-2 infection >6 months after a positive PCR test. We identified that 42-53% of patients with Long COVID, but without detectable SARS-CoV-2 antibodies, nonetheless have detectable SARS-CoV-2 specific T cell responses. INTERPRETATION: Our study reveals evidence (detectable T cell mediated IL-2 release) of previous SARS-CoV-2 infection in seronegative patients with Long COVID. FUNDING: This work was funded by the Addenbrooke's Charitable Trust (900276 to NS), NIHR award (G112259 to NS) and supported by the NIHR Cambridge Biomedical Research Centre. NJM is supported by the MRC (TSF MR/T032413/1) and NHSBT (WPA15-02). PJL is supported by the Wellcome Trust (PRF 210688/Z/18/Z, 084957/Z/08/Z), a Medical Research Council research grant MR/V011561/1 and the United Kingdom Research and a Innovation COVID Immunology Consortium grant (MR/V028448/1).


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/complications , Humans , Interleukin-2 , SARS-CoV-2
5.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
6.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1695175

ABSTRACT

Clotting Factor V (FV) is primarily synthesised in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes and T regulatory cells as sources of increased FV in hospitalised patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system. Graphical

7.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1699877

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

8.
EBioMedicine ; 77: 103878, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693688

ABSTRACT

BACKGROUND: Prominent early features of COVID-19 include severe, often clinically silent, hypoxia and a pronounced reduction in B cells, the latter important in defence against SARS-CoV-2. This presentation resembles the phenotype of mice with VHL-deficient B cells, in which Hypoxia-Inducible Factors are constitutively active, suggesting hypoxia might drive B cell abnormalities in COVID-19. METHODS: Detailed B cell phenotyping was undertaken by flow-cytometry on longitudinal samples from patients with COVID-19 across a range of severities (NIHR Cambridge BioResource). The impact of hypoxia on the transcriptome was assessed by single-cell and whole blood RNA sequencing analysis. The direct effect of hypoxia on B cells was determined through immunisation studies in genetically modified and hypoxia-exposed mice. FINDINGS: We demonstrate the breadth of early and persistent defects in B cell subsets in moderate/severe COVID-19, including reduced marginal zone-like, memory and transitional B cells, changes also observed in B cell VHL-deficient mice. These findings were associated with hypoxia-related transcriptional changes in COVID-19 patient B cells, and similar B cell abnormalities were seen in mice kept in hypoxic conditions. INTERPRETATION: Hypoxia may contribute to the pronounced and persistent B cell pathology observed in acute COVID-19 pneumonia. Assessment of the impact of early oxygen therapy on these immune defects should be considered, as their correction could contribute to improved outcomes. FUNDING: Evelyn Trust, Addenbrooke's Charitable Trust, UKRI/NIHR, Wellcome Trust.


Subject(s)
COVID-19 , Pneumonia , Animals , Humans , Hypoxia , Mice , Oxygen , SARS-CoV-2
9.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-1661209

ABSTRACT

Kotagiri et al. find that SARS-CoV-2 infection versus vaccination induces distinct changes in the B cell receptor repertoire, including prominent clonal expansion in IgA and IgM after infection, but IgG after vaccination. A broad anti-spike response to infection contrasts with a narrower RBD-focused one after vaccination, potentially informing vaccination strategies.

10.
Nature ; 592(7853): 277-282, 2021 04.
Article in English | MEDLINE | ID: covidwho-1387425

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Subject(s)
COVID-19/drug therapy , COVID-19/therapy , COVID-19/virology , Evolution, Molecular , Mutagenesis/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Chronic Disease , Genome, Viral/drug effects , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Immune Evasion/drug effects , Immune Evasion/genetics , Immune Evasion/immunology , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunization, Passive , Male , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutation , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Viral Load/drug effects , Virus Shedding
11.
Nature ; 596(7872): 417-422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1287811

ABSTRACT

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.


Subject(s)
Aging/immunology , COVID-19 Vaccines/immunology , Immunity , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Aging/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Immunity/genetics , Immunization, Secondary , Immunoglobulin A/immunology , Immunoglobulin Class Switching , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunologic Memory/immunology , Inflammation/blood , Inflammation/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
12.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1230571

ABSTRACT

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Longitudinal Studies , Lymphocyte Activation/genetics , Oxidative Phosphorylation , Phenotype , Prognosis , Reactive Oxygen Species/metabolism , Severity of Illness Index , Transcriptome
13.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-1127162

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage
14.
Nat Commun ; 11(1): 6385, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-977267

ABSTRACT

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Immunity, Humoral/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/therapeutic use , Adult , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/virology , Fever/prevention & control , Humans , Immunity, Humoral/immunology , Lymphocyte Count , Male , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Treatment Outcome
16.
Elife ; 92020 06 19.
Article in English | MEDLINE | ID: covidwho-607959

ABSTRACT

Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK 'lockdown'. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent 'hubs' of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely.


Subject(s)
Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/transmission , Health Personnel , Mass Screening/statistics & numerical data , Occupational Diseases/prevention & control , Pandemics , Pneumonia, Viral/transmission , Adult , Asymptomatic Diseases , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Community-Acquired Infections/transmission , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , England/epidemiology , Family Characteristics , Female , Hospital Units , Hospitals, Teaching/organization & administration , Hospitals, Teaching/statistics & numerical data , Hospitals, University/organization & administration , Hospitals, University/statistics & numerical data , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Male , Mass Screening/organization & administration , Middle Aged , Nasopharynx/virology , Occupational Diseases/epidemiology , Pandemics/prevention & control , Patient Admission/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Prevalence , Program Evaluation , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Symptom Assessment
17.
Elife ; 92020 05 11.
Article in English | MEDLINE | ID: covidwho-236326

ABSTRACT

Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19)>7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff.


Patients admitted to NHS hospitals are now routinely screened for SARS-CoV-2 (the virus that causes COVID-19), and isolated from other patients if necessary. Yet healthcare workers, including frontline patient-facing staff such as doctors, nurses and physiotherapists, are only tested and excluded from work if they develop symptoms of the illness. However, there is emerging evidence that many people infected with SARS-CoV-2 never develop significant symptoms: these people will therefore be missed by 'symptomatic-only' testing. There is also important data showing that around half of all transmissions of SARS-CoV-2 happen before the infected individual even develops symptoms. This means that much broader testing programs are required to spot people when they are most infectious. Rivett, Sridhar, Sparkes, Routledge et al. set out to determine what proportion of healthcare workers was infected with SARS-CoV-2 while also feeling generally healthy at the time of testing. Over 1,000 staff members at a large UK hospital who felt they were well enough to work, and did not fit the government criteria for COVID-19 infection, were tested. Amongst these, 3% were positive for SARS-CoV-2. On closer questioning, around one in five reported no symptoms, two in five very mild symptoms that they had dismissed as inconsequential, and a further two in five reported COVID-19 symptoms that had stopped more than a week previously. In parallel, healthcare workers with symptoms of COVID-19 (and their household contacts) who were self-isolating were also tested, in order to allow those without the virus to quickly return to work and bolster a stretched workforce. Finally, the rates of infection were examined to probe how the virus could have spread through the hospital and among staff ­ and in particular, to understand whether rates of infection were greater among staff working in areas devoted to COVID-19 patients. Despite wearing appropriate personal protective equipment, healthcare workers in these areas were almost three times more likely to test positive than those working in areas without COVID-19 patients. However, it is not clear whether this genuinely reflects greater rates of patients passing the infection to staff. Staff may give the virus to each other, or even acquire it at home. Overall, this work implies that hospitals need to be vigilant and introduce broad screening programmes across their workforces. It will be vital to establish such approaches before 'lockdown' is fully lifted, so healthcare institutions are prepared for any second peak of infections.


Subject(s)
Asymptomatic Infections , Clinical Laboratory Techniques , Health Personnel , Betacoronavirus/physiology , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Female , Humans , Infection Control , Male , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL