Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
3.
BMC Public Health ; 22(1): 716, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1785149

ABSTRACT

BACKGROUND: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need ("pillar 1") before expanding to community-wide symptomatics ("pillar 2"). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. METHODS: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January 2020-30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA. RESULTS: A model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. CONCLUSIONS: Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Cost of Illness , Humans , Information Storage and Retrieval , SARS-CoV-2
4.
Lancet Infect Dis ; 22(5): 657-667, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713042

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in unprecedented disruption to society, which indirectly affects infectious disease dynamics. We aimed to assess the effects of COVID-19-related disruption on dengue, a major expanding acute public health threat, in southeast Asia and Latin America. METHODS: We assembled data on monthly dengue incidence from WHO weekly reports, climatic data from ERA5, and population variables from WorldPop for 23 countries between January, 2014 and December, 2019 and fit a Bayesian regression model to explain and predict seasonal and multi-year dengue cycles. We compared model predictions with reported dengue data January to December, 2020, and assessed if deviations from projected incidence since March, 2020 are associated with specific public health and social measures (from the Oxford Coronavirus Government Response Tracer database) or human movement behaviours (as measured by Google mobility reports). FINDINGS: We found a consistent, prolonged decline in dengue incidence across many dengue-endemic regions that began in March, 2020 (2·28 million cases in 2020 vs 4·08 million cases in 2019; a 44·1% decrease). We found a strong association between COVID-19-related disruption (as measured independently by public health and social measures and human movement behaviours) and reduced dengue risk, even after taking into account other drivers of dengue cycles including climatic and host immunity (relative risk 0·01-0·17, p<0·01). Measures related to the closure of schools and reduced time spent in non-residential areas had the strongest evidence of association with reduced dengue risk, but high collinearity between covariates made specific attribution challenging. Overall, we estimate that 0·72 million (95% CI 0·12-1·47) fewer dengue cases occurred in 2020 potentially attributable to COVID-19-related disruption. INTERPRETATION: In most countries, COVID-19-related disruption led to historically low dengue incidence in 2020. Continuous monitoring of dengue incidence as COVID-19-related restrictions are relaxed will be important and could give new insights into transmission processes and intervention options. FUNDING: National Key Research and Development Program of China and the Medical Research Council.


Subject(s)
COVID-19 , Dengue , Bayes Theorem , COVID-19/epidemiology , Dengue/epidemiology , Humans , Latin America/epidemiology , Pandemics , SARS-CoV-2
5.
Lancet Regional Health. Americas ; 5:100119-100119, 2021.
Article in English | EuropePMC | ID: covidwho-1652110

ABSTRACT

Background Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and 557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic, but are often challenging due to different population sizes and structures. Methods We describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age standardised and used to estimate the effective reproduction number (Rt). We show how such platforms can perform real-time regression analyses to identify factors associated with the rate of initial spread and early reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of COVID-19 incidence. Findings After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, the epidemic spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11·1 days [95% CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial epidemic intensity (mean Rt) were largely driven by geographic location and the date of local onset. Interpretation This study demonstrates that platforms that monitor, standardise and analyse the epidemiological data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt responses to the current and future pandemics. Funding This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0)

6.
Euro Surveill ; 26(49)2021 12.
Article in English | MEDLINE | ID: covidwho-1566613

ABSTRACT

BackgroundPopulation-level mathematical models of outbreaks typically assume that disease transmission is not impacted by population density ('frequency-dependent') or that it increases linearly with density ('density-dependent').AimWe sought evidence for the role of population density in SARS-CoV-2 transmission.MethodsUsing COVID-19-associated mortality data from England, we fitted multiple functional forms linking density with transmission. We projected forwards beyond lockdown to ascertain the consequences of different functional forms on infection resurgence.ResultsCOVID-19-associated mortality data from England show evidence of increasing with population density until a saturating level, after adjusting for local age distribution, deprivation, proportion of ethnic minority population and proportion of key workers among the working population. Projections from a mathematical model that accounts for this observation deviate markedly from the current status quo for SARS-CoV-2 models which either assume linearity between density and transmission (30% of models) or no relationship at all (70%). Respectively, these classical model structures over- and underestimate the delay in infection resurgence following the release of lockdown.ConclusionIdentifying saturation points for given populations and including transmission terms that account for this feature will improve model accuracy and utility for the current and future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , England/epidemiology , Humans , Minority Groups
7.
Lancet Reg Health West Pac ; 14: 100259, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1364343

ABSTRACT

BACKGROUND: In response to the COVID-19 pandemic, China implemented strict restrictions on cross-border travel to prevent disease importation. Yunnan, a Chinese province that borders dengue-endemic countries in Southeast Asia, experienced unprecedented reduction in dengue, from 6840 recorded cases in 2019 to 260 in 2020. METHODS: Using a combination of epidemiological and virus genomic data, collected from 2013 to 2020 in Yunnan and neighbouring countries, we conduct a series of analyses to characterise the role of virus importation in driving dengue dynamics in Yunnan and assess the association between recent international travel restrictions and the decline in dengue reported in Yunnan in 2020. FINDINGS: We find strong evidence that dengue incidence between 2013-2019 in Yunnan was closely linked with international importation of cases. A 0-2 month lag in incidence not explained by seasonal differences, absence of local transmission in the winter, effective reproductive numbers < 1 (as estimated independently using genetic data) and diverse cosmopolitan dengue virus phylogenies all suggest dengue is non-endemic in Yunnan. Using a multivariate statistical model we show that the substantial decline in dengue incidence observed in Yunnan in 2020 but not in neighbouring countries is closely associated with the timing of international travel restrictions, even after accounting for other environmental drivers of dengue incidence. INTERPRETATION: We conclude that Yunnan is a regional sink for DENV lineage movement and that border restrictions may have substantially reduced dengue burden in 2020, potentially averting thousands of cases. Targeted testing and surveillance of travelers returning from high-risk areas could help to inform public health strategies to minimise or even eliminate dengue outbreaks in non-endemic settings like southern China. FUNDING: Funding for this study was provided by National Key Research and Development Program of China, Beijing Science and Technology Planning Project (Z201100005420010); Beijing Natural Science Foundation (JQ18025); Beijing Advanced Innovation Program for Land Surface Science; National Natural Science Foundation of China (82073616); Young Elite Scientist Sponsorship Program by CAST (YESS) (2018QNRC001); H.T., O.P.G. and M.U.G.K. acknowledge support from the Oxford Martin School. O.J.B was supported by a Wellcome Trust Sir Henry Wellcome Fellowship (206471/Z/17/Z). Chinese translation of the abstract (Appendix 2).

8.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200266, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309686

ABSTRACT

As several countries gradually release social distancing measures, rapid detection of new localized COVID-19 hotspots and subsequent intervention will be key to avoiding large-scale resurgence of transmission. We introduce ASMODEE (automatic selection of models and outlier detection for epidemics), a new tool for detecting sudden changes in COVID-19 incidence. Our approach relies on automatically selecting the best (fitting or predicting) model from a range of user-defined time series models, excluding the most recent data points, to characterize the main trend in an incidence. We then derive prediction intervals and classify data points outside this interval as outliers, which provides an objective criterion for identifying departures from previous trends. We also provide a method for selecting the optimal breakpoints, used to define how many recent data points are to be excluded from the trend fitting procedure. The analysis of simulated COVID-19 outbreaks suggests ASMODEE compares favourably with a state-of-art outbreak-detection algorithm while being simpler and more flexible. As such, our method could be of wider use for infectious disease surveillance. We illustrate ASMODEE using publicly available data of National Health Service (NHS) Pathways reporting potential COVID-19 cases in England at a fine spatial scale, showing that the method would have enabled the early detection of the flare-ups in Leicester and Blackburn with Darwen, two to three weeks before their respective lockdown. ASMODEE is implemented in the free R package trendbreaker. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , SARS-CoV-2/pathogenicity , Algorithms , COVID-19/transmission , COVID-19/virology , Communicable Disease Control , England/epidemiology , Humans , United Kingdom/epidemiology
9.
Nat Hum Behav ; 4(8): 856-865, 2020 08.
Article in English | MEDLINE | ID: covidwho-690410

ABSTRACT

The first case of COVID-19 was detected in Brazil on 25 February 2020. We report and contextualize epidemiological, demographic and clinical findings for COVID-19 cases during the first 3 months of the epidemic. By 31 May 2020, 514,200 COVID-19 cases, including 29,314 deaths, had been reported in 75.3% (4,196 of 5,570) of municipalities across all five administrative regions of Brazil. The R0 value for Brazil was estimated at 3.1 (95% Bayesian credible interval = 2.4-5.5), with a higher median but overlapping credible intervals compared with some other seriously affected countries. A positive association between higher per-capita income and COVID-19 diagnosis was identified. Furthermore, the severe acute respiratory infection cases with unknown aetiology were associated with lower per-capita income. Co-circulation of six respiratory viruses was detected but at very low levels. These findings provide a comprehensive description of the ongoing COVID-19 epidemic in Brazil and may help to guide subsequent measures to control virus transmission.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Disease Transmission, Infectious , Influenza, Human , Pandemics , Pneumonia, Viral , Adult , Aged , Brazil/epidemiology , COVID-19 , COVID-19 Testing , Child , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Coinfection/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Infant , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Mortality , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , SARS-CoV-2 , Socioeconomic Factors
10.
Science ; 369(6508): 1255-1260, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-675945

ABSTRACT

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number , Bayes Theorem , Betacoronavirus/classification , Brazil/epidemiology , COVID-19 , COVID-19 Testing , Cities/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Europe , Evolution, Molecular , Genome, Viral , Humans , Models, Genetic , Models, Statistical , Pandemics/prevention & control , Phylogeny , Phylogeography , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Spatio-Temporal Analysis , Travel , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL