Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Microbiol Spectr ; 10(2): e0021122, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1752769

ABSTRACT

The use of anti-spike (S) serologic assays as surrogate measurements of SARS-CoV-2 vaccine induced immunity will be an important clinical and epidemiological tool. The characteristics of a commercially available anti-S antibody assay (Roche Elecsys anti-SARS-CoV-2 S) were evaluated in a cohort of vaccine recipients. Levels were correlated with pseudotype neutralizing antibodies (NAb) across SARS-CoV-2 variants. We recruited adults receiving a two-dose series of mRNA-1273 or BNT162b2 and collected serum at scheduled intervals up to 8 months post-first vaccination. Anti-S and NAb levels were measured, and correlation was evaluated by (i) vaccine type and (ii) SARS-CoV-2 variant (wild-type, Alpha, Beta, Gamma, and three constructs Day 146*, Day 152*, and RBM-2). Forty-six mRNA vaccine recipients were enrolled. mRNA-1273 vaccine recipients had higher peak anti-S and NAb levels compared with BNT162b2 (P < 0.001 for anti-S levels; P < 0.05 for NAb levels). When anti-S and NAb levels were compared, there was good correlation (all r values ≥ 0.85) in both BNT162b2 and mRNA-1273 vaccine recipients across all evaluated variants; however, these correlations were nonlinear in nature. Lower correlation was identified between anti-S and NAb for the Beta variant (r = 0.88) compared with the wild-type (WT) strain (r = 0.94). Finally, the degree of neutralizing activity at any given anti-S level was lower for each variant compared with that of the WT strain, (P < 0.001). Although the Roche anti-S assay correlates well with NAb levels, this association is affected by vaccine type and SARS-CoV-2 variant. These variables must be considered when interpreting anti-S levels. IMPORTANCE We evaluated anti-spike antibody concentrations in healthy mRNA vaccinated individuals and compared these concentrations to values obtained from pseudotype neutralization assays targeting SARS-CoV-2 variants of concern to determine how well anti-spike antibodies correlate with neutralizing titers, which have been used as a marker of immunity from COVID-19 infection. We found high peak anti-spike concentrations in these individuals, with significantly higher levels seen in mRNA-1273 vaccine recipients. When we compared anti-spike and pseudotype neuralization titers, we identified good correlation; however, this correlation was affected by both vaccine type and variant, illustrating the difficulty of applying a "one size fits all" approach to anti-spike result interpretation. Our results support CDC recommendations to discourage anti-spike antibody testing to assess for immunity after vaccination and cautions providers in their interpretations of these results as a surrogate of protection in COVID-vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic
2.
Vector Borne Zoonotic Dis ; 21(11): 839-842, 2021 11.
Article in English | MEDLINE | ID: covidwho-1746959

ABSTRACT

Background: A history of Lyme disease can complicate the interpretation of Lyme disease serology in acutely symptomatic patients. Materials and Methods: We prospectively enrolled children undergoing evaluation for Lyme disease in the emergency department of one of eight participating Pedi Lyme Net centers. We selected symptomatic children with a Lyme disease history (definite, probable, or none) as well as an available research biosample. We defined a Lyme disease case with either an erythema migrans (EM) lesion or positive two-tier serology with compatible symptoms. Using a generalized estimating equation, we examined the relationship between time from previous Lyme disease diagnosis and current Lyme disease after adjustment for patient demographics and symptoms as well as clustering by center. Results: Of 2501 prospectively enrolled study patients, 126 (5.0%) reported a history of definite or probable Lyme disease. Of these children with previous Lyme disease, 47 met diagnostic criteria for Lyme disease at the time of enrollment (37.3%; 95% confidence interval [CI] 29.1-45.7%); 2 had an EM lesion, and 45 had positive two-tier Lyme disease serology. Over time from the previous Lyme disease diagnosis, the less likely the patient met diagnostic criteria for Lyme disease (adjusted odds ratio 0.62 per time period; 95% CI 0.46-0.84). Conclusions: For children with a history of Lyme disease before enrollment, one-third met the diagnostic criteria for acute Lyme disease with a declining rate over time from previous Lyme disease diagnosis. Novel Lyme disease diagnostics are needed to help distinguish acute from previous Lyme disease.


Subject(s)
Lyme Disease , Child , Humans , Lyme Disease/diagnosis , Lyme Disease/epidemiology , Sensitivity and Specificity
3.
Nat Med ; 28(5): 1083-1094, 2022 May.
Article in English | MEDLINE | ID: covidwho-1671607

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/diagnosis , Humans , Microfluidics , SARS-CoV-2/genetics
4.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: covidwho-1388436

ABSTRACT

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Boston/epidemiology , COVID-19/transmission , Disease Outbreaks , Epidemiological Monitoring , Humans
5.
Open Forum Infect Dis ; 8(6): ofab257, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1266129

ABSTRACT

Among hospitalized persons under investigation for coronavirus disease 2019 (COVID-19), more repeated severe acute respiratory syndrome coronavirus 2 nucleic acid amplification tests (NAATs) after a negative NAAT were positive from lower than from upper respiratory tract specimens (1.9% vs 1.0%, P = .033). Lower respiratory testing should be prioritized among patients displaying respiratory symptoms with moderate-to-high suspicion for COVID-19 after 1 negative upper respiratory NAAT.

6.
J Clin Pathol ; 74(8): 496-503, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1247388

ABSTRACT

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Emergency Service, Hospital , Laboratories, Hospital , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/virology , Humans , Predictive Value of Tests , Reproducibility of Results
7.
Open Forum Infect Dis ; 8(1): ofaa559, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1081406

ABSTRACT

BACKGROUND: Concerns about false-negative (FN) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid amplification tests (NAATs) have prompted recommendations for repeat testing if suspicion for coronavirus disease 2019 (COVID-19) infection is moderate to high. However, the frequency of FNs and patient characteristics associated with FNs are poorly understood. METHODS: We retrospectively reviewed test results from 15 011 adults who underwent ≥1 SARS-CoV-2 NAATs; 2699 had an initial negative NAAT and repeat testing. We defined FNs as ≥1 negative NAATs followed by a positive NAAT within 14 days during the same episode of illness. We stratified subjects with FNs by duration of symptoms before the initial FN test (≤5 days versus >5 days) and examined their clinical, radiologic, and laboratory characteristics. RESULTS: Sixty of 2699 subjects (2.2%) had a FN result during the study period. The weekly frequency of FNs among subjects with repeat testing peaked at 4.4%, coinciding with peak NAAT positivity (38%). Most subjects with FNs had symptoms (52 of 60; 87%) and chest radiography (19 of 32; 59%) consistent with COVID-19. Of the FN NAATs, 18 of 60 (30%) were performed early (ie, ≤1 day of symptom onset), and 18 of 60 (30%) were performed late (ie, >7 days after symptom onset) in disease. Among 17 subjects with 2 consecutive FNs on NP NAATs, 9 (53%) provided lower respiratory tract (LRT) specimens for testing, all of which were positive. CONCLUSIONS: Our findings support repeated NAATs among symptomatic patients, particularly during periods of higher COVID-19 incidence. The LRT testing should be prioritized to increase yield among patients with high clinical suspicion for COVID-19.

8.
J Neurol Sci ; 421: 117308, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1033825

ABSTRACT

We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.


Subject(s)
Brain Injuries/diagnostic imaging , COVID-19/diagnostic imaging , Magnetic Resonance Imaging/methods , Microvessels/diagnostic imaging , Severity of Illness Index , Brain/blood supply , Brain/diagnostic imaging , Brain Injuries/etiology , COVID-19/complications , Humans , Intensive Care Units/trends , Male , Microvessels/injuries , Middle Aged , Retrospective Studies
9.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1012326

ABSTRACT

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Subject(s)
Antibodies, Neutralizing/immunology , Biomarkers/analysis , COVID-19/immunology , COVID-19/physiopathology , Adult , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , Comorbidity , Coronavirus/classification , Coronavirus/physiology , Cross Reactions , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Massachusetts/epidemiology , Middle Aged , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Survival Analysis , Treatment Outcome
10.
Open Forum Infect Dis ; 8(2): ofaa631, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-990785

ABSTRACT

BACKGROUND: Amid the enduring pandemic, there is an urgent need for expanded access to rapid, sensitive, and inexpensive coronavirus disease 2019 (COVID-19) testing worldwide without specialized equipment. We developed a simple test that uses colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect severe acute resrpiratory syndrome coronavirus 2 (SARS-CoV-2) in 40 minutes from sample collection to result. METHODS: We tested 135 nasopharyngeal specimens from patients evaluated for COVID-19 infection at Massachusetts General Hospital. Specimens were either added directly to RT-LAMP reactions, inactivated by a combined chemical and heat treatment step, or inactivated then purified with a silica particle-based concentration method. Amplification was performed with 2 SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. RESULTS: Direct RT-LAMP testing of unprocessed specimens could only reliably detect samples with abundant SARS-CoV-2 (>3 000 000 copies/mL), with sensitivities of 50% (95% CI, 28%-72%) and 59% (95% CI, 43%-73%) in samples collected in universal transport medium and saline, respectively, compared with quantitative polymerase chain reaction (qPCR). Adding an upfront RNase inactivation step markedly improved the limit of detection to at least 25 000 copies/mL, with 87.5% (95% CI, 72%-95%) sensitivity and 100% specificity (95% CI, 87%-100%). Using both inactivation and purification increased the assay sensitivity by 10-fold, achieving a limit of detection comparable to commercial real-time PCR-based diagnostics. CONCLUSIONS: By incorporating a fast and inexpensive sample preparation step, RT-LAMP accurately detects SARS-CoV-2 with limited equipment for about US$6 per sample, making this a potentially ideal assay to increase testing capacity, especially in resource-limited settings.

11.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: covidwho-991746

ABSTRACT

Sensitive and specific severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologic assays are needed to inform diagnostic, therapeutic, and public health decision-making. We evaluated three commercial serologic assays as stand-alone tests and as components of two-test algorithms. Two nucleocapsid antibody tests (Abbott IgG and Roche total antibody) and one spike protein antibody test (DiaSorin IgG) were included. We assessed sensitivity using 128 serum samples from symptomatic PCR-confirmed coronavirus disease 2019 (COVID-19)-infected patients and specificity using 1,204 samples submitted for routine serology prior to COVID-19's emergence, plus 64 pandemic-era samples from SARS-CoV-2 PCR-negative patients with respiratory symptoms. Assays were evaluated as stand-alone tests and as components of a two-test algorithm in which positive results obtained using one assay were verified using a second assay. The two nucleocapsid antibody tests were more sensitive than the spike protein antibody test overall (70% and 70% versus 57%; P ≤ 0.003), with pronounced differences observed using samples collected 7 to 14 days after symptom onset. All three assays were comparably sensitive (≥89%; P ≥ 0.13) using samples collected >14 days after symptom onset. Specificity was higher using the nucleocapsid antibody tests (99.3% and 99.7%) than using the spike protein antibody test (97.8%; P ≤ 0.002). When any two assays were paired in a two-test algorithm, the specificity was 99.9% (P < 0.0001 to 0.25 compared with the individual assays), and the positive predictive value (PPV) improved substantially, with a minimal effect on the negative predictive value (NPV). In conclusion, two nucleocapsid antibody tests outperformed a spike protein antibody test. Pairing two different serologic tests in a two-test algorithm improves the PPV, compared with the individual assays alone, while maintaining the NPV.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Algorithms , Clinical Laboratory Techniques/methods , Humans , SARS-CoV-2 , Sensitivity and Specificity
12.
medRxiv ; 2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-915962

ABSTRACT

BACKGROUND: Characterizing the humoral immune response to SARS-CoV-2 and developing accurate serologic assays are needed for diagnostic purposes and estimating population-level seroprevalence. METHODS: We measured the kinetics of early antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in a cohort of 259 symptomatic North American patients infected with SARS-CoV-2 (up to 75 days after symptom onset) compared to antibody levels in 1548 individuals whose blood samples were obtained prior to the pandemic. RESULTS: Between 14-28 days from onset of symptoms, IgG, IgA, or IgM antibody responses to RBD were all accurate in identifying recently infected individuals, with 100% specificity and a sensitivity of 97%, 91%, and 81% respectively. Although the estimated median time to becoming seropositive was similar across isotypes, IgA and IgM antibodies against RBD were short-lived with most individuals estimated to become seronegative again by 51 and 47 days after symptom onset, respectively. IgG antibodies against RBD lasted longer and persisted through 75 days post-symptoms. IgG antibodies to SARS-CoV-2 RBD were highly correlated with neutralizing antibodies targeting the S protein. No cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies was observed with several known circulating coronaviruses, HKU1, OC 229 E, OC43, and NL63. CONCLUSIONS: Among symptomatic SARS-CoV-2 cases, RBD-targeted antibodies can be indicative of previous and recent infection. IgG antibodies are correlated with neutralizing antibodies and are possibly a correlate of protective immunity.

13.
Sci Immunol ; 5(52)2020 10 08.
Article in English | MEDLINE | ID: covidwho-842518

ABSTRACT

We measured plasma and/or serum antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in 343 North American patients infected with SARS-CoV-2 (of which 93% required hospitalization) up to 122 days after symptom onset and compared them to responses in 1548 individuals whose blood samples were obtained prior to the pandemic. After setting seropositivity thresholds for perfect specificity (100%), we estimated sensitivities of 95% for IgG, 90% for IgA, and 81% for IgM for detecting infected individuals between 15 and 28 days after symptom onset. While the median time to seroconversion was nearly 12 days across all three isotypes tested, IgA and IgM antibodies against RBD were short-lived with median times to seroreversion of 71 and 49 days after symptom onset. In contrast, anti-RBD IgG responses decayed slowly through 90 days with only 3 seropositive individuals seroreverting within this time period. IgG antibodies to SARS-CoV-2 RBD were strongly correlated with anti-S neutralizing antibody titers, which demonstrated little to no decrease over 75 days since symptom onset. We observed no cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies with other widely circulating coronaviruses (HKU1, 229 E, OC43, NL63). These data suggest that RBD-targeted antibodies are excellent markers of previous and recent infection, that differential isotype measurements can help distinguish between recent and older infections, and that IgG responses persist over the first few months after infection and are highly correlated with neutralizing antibodies.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Betacoronavirus/genetics , Biomarkers/blood , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Cross Reactions , Dried Blood Spot Testing , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
14.
FASEB J ; 34(10): 13877-13884, 2020 10.
Article in English | MEDLINE | ID: covidwho-733355

ABSTRACT

The diagnosis of COVID-19 requires integration of clinical and laboratory data. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic assays play a central role in diagnosis and have fixed technical performance metrics. Interpretation becomes challenging because the clinical sensitivity changes as the virus clears and the immune response emerges. Our goal was to examine the clinical sensitivity of two most common SARS-CoV-2 diagnostic test modalities, polymerase chain reaction (PCR) and serology, over the disease course to provide insight into their clinical interpretation in patients presenting to the hospital. We conducted a single-center, retrospective study. To derive clinical sensitivity of PCR, we identified 209 PCR-positive SARS-CoV-2 patients with multiple PCR test results (624 total PCR tests) and calculated daily sensitivity from date of symptom onset or first positive test. Clinical sensitivity of PCR decreased with days post symptom onset with >90% clinical sensitivity during the first 5 days after symptom onset, 70%-71% from Days 9 to 11, and 30% at Day 21. To calculate daily clinical sensitivity by serology, we utilized 157 PCR-positive patients with a total of 197 specimens tested by enzyme-linked immunosorbent assay for IgM, IgG, and IgA anti-SARS-CoV-2 antibodies. In contrast to PCR, serological sensitivity increased with days post symptom onset with >50% of patients seropositive by at least one antibody isotype after Day 7, >80% after Day 12, and 100% by Day 21. Taken together, PCR and serology are complimentary modalities that require time-dependent interpretation. Superimposition of sensitivities over time indicate that serology can function as a reliable diagnostic aid indicating recent or prior infection.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral/blood , COVID-19/blood , Female , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL