Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-305830

ABSTRACT

Background: For a targeted therapeutic strategy to show outcome benefit, there needs to be a strong biological and pathogenic rationale to underpin and direct personalised treatments. Relevant biological disease features and biomarkers identify patients for the correct therapeutic, delivered at an appropriate time, dose and duration for maximal efficacy. We evaluated whether serum levels of a wide range of proposed therapeutic targets in COVID-19 discriminated between patients with mild and severe disease or death.Methods: A search of clinicaltrials.gov identified immunological drug targets in COVID-19. We subsequently conducted an observational study investigating the association of serum biomarkers relating to putative therapeutic biomarkers with illness severity and outcome.Results: A search of clinicaltrials.gov identified 477 randomized trials assessing immunomodulatory therapies, including 168 different therapies against 83 different pathways. We measured levels of ten cytokines/signalling proteins including those related to the most common therapeutic targets (GM-CSF, IFN-α2a, IFN-β, IFN-γ, IL-1β, IL-1ra, IL-6, IL-7, IL-8, TNF-α), immunoglobulin G ( IgG) antibodies directed against either the COVID-19 spike protein (S1) or nucleocapsid protein (N), and neutralization titres of antibodies within the first 5 days of hospital admission in 86 patients, 44 (51%) with mild disease and 42 (49%) with severe disease. Six of the ten cytokine/signalling protein markers measured (IL-6, IL-7, IL-8, interferon- a, interferon- b, IL -1ra ) discriminated between patients with mild and severe disease, although most were similar or only modestly raised above that seen in healthy volunteers. A similar proportion of patients with mild or severe disease had detectable S1 or N IgG antibodies with equivalent levels between groups. Neutralization titres were higher among patients with severe disease.Interpretation: Some therapeutic and prognostic biomarkers may be potentially useful in identifying patients who may benefit from specific immunomodulatory therapies in COVID-19 disease, particularly interleukin-6. It is however noteworthy that absolute values of a number of identified biomarkers were either appropriately elevated or within the normal range. This implies that these immunomodulatory treatments may be of limited benefit.Funding: National Institute for Health Research UCLH Biomedical Research Centre (BRC756/HI/MS/101440) and the UCL Coronavirus Response Fund.Declaration of Interests: MeS reports grants and advisory board fees from NewB, grants from the Defence Science and Technology Laboratory, Critical Pressure, Apollo Therapeutics, advisory board and speaker fees (paid to his institution) from Amormed, Biotest, GE, Baxter, Roche, and Bayer, and honorarium for chairing a data monitoring and safety committee from Shionogi. All other authors have nothing to declare. Ethics Approval Statement: Ethical approval was received from the London-Westminster Research Ethics Committee, the Health Research Authority and Health and Care Research Wales (HCRW) on 2nd July 2020 (REC reference 20/HRA/2505, IRAS ID 284088). The SAFER study protocol was approved by the NHS Health Research Authority (ref 20/SC/0147) on 26 March 2020. Ethical oversight was provided by the South- Central Berkshire Research Ethics Committee.

5.
Crit Care Explor ; 3(8): e0488, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356719

ABSTRACT

OBJECTIVES: Multiple mechanisms have been proposed to explain disease severity in coronavirus disease 2019. Therapeutic approaches need to be underpinned by sound biological rationale. We evaluated whether serum levels of a range of proposed coronavirus disease 2019 therapeutic targets discriminated between patients with mild or severe disease. DESIGN: A search of ClinicalTrials.gov identified coronavirus disease 2019 immunological drug targets. We subsequently conducted a retrospective observational cohort study investigating the association of serum biomarkers within the first 5 days of hospital admission relating to putative therapeutic biomarkers with illness severity and outcome. SETTING: University College London, a tertiary academic medical center in the United Kingdom. PATIENTS: Patients admitted to hospital with a diagnosis of coronavirus disease 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eighty-six patients were recruited, 44 (51%) with mild disease and 42 (49%) with severe disease. We measured levels of 10 cytokines/signaling proteins related to the most common therapeutic targets (granulocyte-macrophage colony-stimulating factor, interferon-α2a, interferon-ß, interferon-γ, interleukin-1ß, interleukin-1 receptor antagonist, interleukin-6, interleukin-7, interleukin-8, tumor necrosis factor-α), immunoglobulin G antibodies directed against either coronavirus disease 2019 spike protein or nucleocapsid protein, and neutralization titers of antibodies. Four-hundred seventy-seven randomized trials, including 168 different therapies against 83 different pathways, were identified. Six of the 10 markers (interleukin-6, interleukin-7, interleukin-8, interferon-α2a, interferon-ß, interleukin-1 receptor antagonist) discriminated between patients with mild and severe disease, although most were similar or only modestly raised above that seen in healthy volunteers. A similar proportion of patients with mild or severe disease had detectable spike protein or nucleocapsid protein immunoglobulin G antibodies with equivalent levels between groups. Neutralization titers were higher among patients with severe disease. CONCLUSIONS: Some therapeutic and prognostic biomarkers may be useful in identifying coronavirus disease 2019 patients who may benefit from specific immunomodulatory therapies, particularly interleukin-6. However, biomarker absolute values often did not discriminate between patients with mild and severe disease or death, implying that these immunomodulatory treatments may be of limited benefit.

10.
Trials ; 21(1): 1014, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-966433

ABSTRACT

OBJECTIVES: SARS-Cov-2 virus preferentially binds to the Angiotensin Converting Enzyme 2 (ACE2) on alveolar epithelial type II cells, initiating an inflammatory response and tissue damage which may impair surfactant synthesis contributing to alveolar collapse, worsening hypoxia and leading to respiratory failure. The objective of this study is to evaluate the feasibility, safety and efficacy of nebulised surfactant in COVID-19 adult patients requiring mechanical ventilation for respiratory failure. TRIAL DESIGN: This study is a dose-escalating randomized open-label clinical trial of 20 COVID-19 patients. PARTICIPANTS: This study is conducted in two centres: University Hospital Southampton and University College London Hospitals. Eligible participants are aged ≥18, hospitalised with COVID-19 (confirmed by PCR), who require endotracheal intubation and are enrolled within 24 hours of mechanical ventilation. For patients unable to consent, assent is obtained from a personal legal representative (PerLR) or professional legal representative (ProfLR) prior to enrolment. The following are exclusion criteria: imminent expected death within 24 hours; specific contraindications to surfactant administration (e.g. known allergy, pneumothorax, pulmonary hemorrhage); known or suspected pregnancy; stage 4 chronic kidney disease or requiring dialysis (i.e., eGFR < 30); liver failure (Child-Pugh Class C); anticipated transfer to another hospital, which is not a study site, within 72 hours; current or recent (within 1 month) participation in another study that, in the opinion of the investigator, would prevent enrollment for safety reasons; and declined consent or assent. INTERVENTION AND COMPARATOR: Intervention: The study is based on an investigational drug/device combination product. The surfactant product is Bovactant (Alveofact®), a natural animal derived (bovine) lung surfactant formulated as a lyophilized powder in 108 mg vials and reconstituted to 45 mg/mL in buffer supplied in a prefilled syringe. It is isolated by lung lavage and, by weight, is a mixture of: phospholipid (75% phosphatidylcholine, 13% phosphatidylglycerol, 3% phosphatidylethanolamine, 1% phosphatidylinositol and 1% sphingomyelin), 5% cholesterol, 1% lipid-soluble surfactant-associated proteins (SP-B and SP-C), very low levels of free fatty acid, lyso-phosphatidylcholine, water and 0.3% calcium. The Drug Delivery Device is the AeroFact-COVID™ nebulizer, an investigational device based on the Aerogen® Solo vibrating mesh nebulizer. The timing and escalation dosing plans for the surfactant are as follows. Cohort 1: Three patients will receive 10 vials (1080 mg) each of surfactant at dosing times of 0 hours, 8 hours and 24 hours. 2 controls with no placebo intervention. Cohort 2: Three patients will receive 10 vials (1080 mg) of surfactant at dosing times of 0 hours and 8 hours, and 30 vials (3240 mg) at a dosing time of 24 hours. 2 controls with no placebo intervention. Cohort 3: Three patients will receive 10 vials (1080 mg) of surfactant at a dosing time of 0 hours, and 30 vials (3240 mg) at dosing times of 8 hours and 24 hours. 2 controls with no placebo intervention. Cohort 4: Three patients will receive 30 (3240 mg) vials each of surfactant at dosing times of 0 hours, 8 hours and 24 hours. 2 controls. 2 controls with no placebo intervention. The trial steering committee, advised by the data monitoring committee, will review trial progression and dose escalation/maintenance/reduction after each cohort is completed (48-hour primary outcome timepoint reached) based on available feasibility, adverse event, safety and efficacy data. The trial will not be discontinued on the basis of lack of efficacy. The trial may be stopped early on the basis of safety or feasibility concerns. Comparator: No placebo intervention. All participants will receive usual standard of care in accordance with the local policies for mechanically ventilated patients and all other treatments will be left to the discretion of the attending physician. MAIN OUTCOMES: The co-primary outcome is the improvement in oxygenation (PaO2/FiO2 ratio) and pulmonary ventilation (Ventilation Index (VI), where VI = [RR x (PIP - PEEP) × PaCO2]/1000) at 48 hours after study initiation. The secondary outcomes include frequency and severity of adverse events (AEs), Adverse Device Effects (ADEs), Serious Adverse Events (SAEs) and Serious Adverse Device Events (SADEs), change in pulmonary compliance, change in positive end-expiratory pressure (PEEP) requirement of ventilatory support at 24 and 48 hours after study initiation, clinical improvement defined by time to one improvement point on the ordinal scale described in the WHO master protocol (2020) recorded while hospitalised, days of mechanical ventilation, mechanical ventilator free days (VFD) at day 21, length of intensive care unit stay, number of days hospitalised and mortality at day 28. Exploratory end points will include quantification of SARS-CoV-2 viral load from tracheal aspirates using PCR, surfactant dynamics (synthesis and turnover) and function (surface tension reduction) from deep tracheal aspirate samples (DTAS), surfactant phospholipid concentrations in plasma and DTAS, inflammatory markers (cellular and cytokine) in plasma and DTAS, and blood oxidative stress markers. RANDOMISATION: After informed assent, patients fulfilling inclusion criteria will be randomised to 3:2 for the treatment and control arms using an internet-based block randomization service (ALEA tool for clinical trials, FormsVision BV) in combination with electronic data collection. Randomisation will be done by the recruiting centre with a unique subject identifier specific to that centre. BLINDING (MASKING): This is an open-labelled unblinded study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The total sample size is 20 COVID-19 mechanically ventilated patients (12 intervention; 8 control). TRIAL STATUS: Current protocol version is V2 dated 5th of June 2020. The recruitment is currently ongoing and started on the 14th of October 2020. The anticipated study completion date is November 2021. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04362059 (Registered 24 April 2020), EUDAMED number: CIV-GB-20-06-033328, EudraCT number: 2020-001886-35 (Registered 11 May 2020) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
COVID-19/drug therapy , Nebulizers and Vaporizers/standards , SARS-CoV-2/genetics , Surface-Active Agents/therapeutic use , Adult , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Feasibility Studies , Humans , Intensive Care Units/statistics & numerical data , London/epidemiology , Mortality/trends , Nebulizers and Vaporizers/statistics & numerical data , Respiration, Artificial/methods , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Safety , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Treatment Outcome , Ventilation/statistics & numerical data
11.
EJHaem ; 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-950770

ABSTRACT

Severe COVID-19 disease is a hyperinflammatory, pro-thrombotic state. We undertook plasma exchange (PEX) to determine its effects on organ function and thrombo-inflammatory markers. Seven critically ill adults with severe COVID-19 respiratory failure (PaO2:FiO2 ratio < 200 mm Hg) requiring invasive or noninvasive ventilatory support and elevated thrombo-inflammatory markers (LDH >800 IU/L and D-dimer >1000 µg/L (or doubling from baseline) received PEX, daily, for a minimum of 5 days. No other immunomodulatory medications were initiated during this period. Seven patients matched for age and baseline biochemistry were a comparator group. Coagulation screening revealed no evidence of coagulopathy. However, von Willebrand Factor (VWF) activity, antigen and VWF antigen: ADAMTS13 ratio, Factor VIII and D-dimers were all elevated. Following 5 days of PEX, plasma levels of all the above, and ferritin levels, were significantly reduced (P < .05) while lymphocyte counts normalized (P < .05). The PaO2:FiO2 ratio increased from a median interquartile range (IQR) of 11.6 (10.8-19.7) kPa to 18.1 (16.0-25.9) kPa (P < .05). Similar improvements were not observed in controls. Acute kidney injury (AKI) occurred among five patients in the control arm but not in patients receiving PEX. PEX improved oxygenation, decreased the incidence of AKI, normalized lymphocyte counts and reduced circulating thrombo-inflammatory markers including D-Dimer and VWF Ag:ADAMTS13 ratio.

13.
Lancet Respir Med ; 8(12): 1209-1218, 2020 12.
Article in English | MEDLINE | ID: covidwho-731948

ABSTRACT

BACKGROUND: In acute respiratory distress syndrome (ARDS) unrelated to COVID-19, two phenotypes, based on the severity of systemic inflammation (hyperinflammatory and hypoinflammatory), have been described. The hyperinflammatory phenotype is known to be associated with increased multiorgan failure and mortality. In this study, we aimed to identify these phenotypes in COVID-19-related ARDS. METHODS: In this prospective observational study done at two UK intensive care units, we recruited patients with ARDS due to COVID-19. Demographic, clinical, and laboratory data were collected at baseline. Plasma samples were analysed for interleukin-6 (IL-6) and soluble tumour necrosis factor receptor superfamily member 1A (TNFR1) using a novel point-of-care assay. A parsimonious regression classifier model was used to calculate the probability for the hyperinflammatory phenotype in COVID-19 using IL-6, soluble TNFR1, and bicarbonate levels. Data from this cohort was compared with patients with ARDS due to causes other than COVID-19 recruited to a previous UK multicentre, randomised controlled trial of simvastatin (HARP-2). FINDINGS: Between March 17 and April 25, 2020, 39 patients were recruited to the study. Median ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air (PaO2/FiO2) was 18 kpa (IQR 15-21) and acute physiology and chronic health evaluation II score was 12 (10-16). 17 (44%) of 39 patients had died by day 28 of the study. Compared with survivors, patients who died were older and had lower PaO2/FiO2. The median probability for the hyperinflammatory phenotype was 0·03 (IQR 0·01-0·2). Depending on the probability cutoff used to assign class, the prevalence of the hyperinflammatory phenotype was between four (10%) and eight (21%) of 39, which is lower than the proportion of patients with the hyperinflammatory phenotype in HARP-2 (186 [35%] of 539). Using the Youden index cutoff (0·274) to classify phenotype, five (63%) of eight patients with the hyperinflammatory phenotype and 12 (39%) of 31 with the hypoinflammatory phenotype died. Compared with matched patients recruited to HARP-2, levels of IL-6 were similar in our cohort, whereas soluble TNFR1 was significantly lower in patients with COVID-19-associated ARDS. INTERPRETATION: In this exploratory analysis of 39 patients, ARDS due to COVID-19 was not associated with higher systemic inflammation and was associated with a lower prevalence of the hyperinflammatory phenotype than that observed in historical ARDS data. This finding suggests that the excess mortality observed in COVID-19-related ARDS is unlikely to be due to the upregulation of inflammatory pathways described by the parsimonious model. FUNDING: US National Institutes of Health, Innovate UK, and Randox.


Subject(s)
COVID-19/classification , Respiratory Distress Syndrome/classification , APACHE , COVID-19/blood , COVID-19/mortality , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/mortality , Female , Humans , Male , Middle Aged , Phenotype , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality
SELECTION OF CITATIONS
SEARCH DETAIL