Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326635

ABSTRACT

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patient's immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

2.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326567

ABSTRACT

Since its emergence and detection in Wuhan, China in late 2019, the novel coronavirus SARS-CoV-2 has spread to nearly every country around the world, resulting in hundreds of thousands of infections to date. The virus was first detected in the Pacific Northwest region of the United States in January, 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the U.S., we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated impacts of federal travel restrictions. This study provides evidence for widespread, sustained transmission of SARS-CoV-2 within the U.S. and highlights the critical need for local surveillance.

3.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-296567

ABSTRACT

The COVID-19 pandemic has revealed the importance of virus genome sequencing to guide public health interventions to control virus transmission and understand SARS-CoV-2 evolution. As of July 20th, 2021, >2 million SARS-CoV-2 genomes have been submitted to GISAID, 94% from high income and 6% from low and middle income countries. Here, we analyse the spatial and temporal heterogeneity in SARS-CoV-2 global genomic surveillance efforts. We report a comprehensive analysis of virus lineage diversity and genomic surveillance strategies adopted globally, and investigate their impact on the detection of known SARS-CoV-2 virus lineages and variants of concern. Our study provides a perspective on the global disparities surrounding SARS-CoV-2 genomic surveillance, their causes and consequences, and possible solutions to maximize the impact of pathogen genome sequencing for efforts on public health.

SELECTION OF CITATIONS
SEARCH DETAIL