Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 12(1): 3114, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1707156

ABSTRACT

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Subject(s)
SARS-CoV-2
2.
Nat Commun ; 13(1): 751, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1684022

ABSTRACT

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Universities , COVID-19/prevention & control , COVID-19/virology , Contact Tracing , Genome, Viral/genetics , Genomics , Humans , Phylogeny , RNA, Viral/genetics , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Students , United Kingdom/epidemiology , Universities/statistics & numerical data
3.
Information Technology and Libraries (Online) ; 40(1):1-4, 2021.
Article in English | ProQuest Central | ID: covidwho-1285525

ABSTRACT

The Free Library of Philadelphia’s online patron engagement has been continuous during the COVID-19 pandemic. The Special Collections Division rushed to generate substantial and engaging online programming using a variety of freeware systems so as not to burden our overworked IT department. We built a sustainable, flexible repository that is populated with videos, podcasts, games, exhibitions, and other activities which can be accessed by patrons of all ages and learning needs. The process has generated opportunities for our staff to interact in new and exciting ways with patrons as programming needs evolve. The model is easily adapted for other groups and institutions and may be a beneficial tool for library workers looking to promote online content. The repository can be found at http://www.bit.ly/FunWithFLPSpecColl.

4.
Information Technology & Libraries ; 40(1):1-4, 2021.
Article in English | Academic Search Complete | ID: covidwho-1138902
5.
Ann Am Thorac Soc ; 18(11): 1876-1885, 2021 11.
Article in English | MEDLINE | ID: covidwho-1084007

ABSTRACT

Rationale: Patients with severe coronavirus disease (COVID-19) meet clinical criteria for the acute respiratory distress syndrome (ARDS), yet early reports suggested they differ physiologically and clinically from patients with non-COVID-19 ARDS, prompting treatment recommendations that deviate from standard evidence-based practices for ARDS. Objectives: To compare respiratory physiology, clinical outcomes, and extrapulmonary clinical features of severe COVID-19 with non-COVID-19 ARDS. Methods: We performed a retrospective cohort study, comparing 130 consecutive mechanically ventilated patients with severe COVID-19 with 382 consecutive mechanically ventilated patients with non-COVID-19 ARDS. Initial respiratory physiology and 28-day outcomes were compared. Extrapulmonary manifestations (inflammation, extrapulmonary organ injury, and coagulation) were compared in an exploratory analysis. Results: Comparison of patients with COVID-19 and non-COVID-19 ARDS suggested small differences in respiratory compliance, ventilatory efficiency, and oxygenation. The 28-day mortality was 30% in patients with COVID-19 and 38% in patients with non-COVID-19 ARDS. In adjusted analysis, point estimates of differences in time to breathing unassisted at 28 days (adjusted subdistributional hazards ratio, 0.98 [95% confidence interval (CI), 0.77-1.26]) and 28-day mortality (risk ratio, 1.01 [95% CI, 0.72-1.42]) were small for COVID-19 versus non-COVID-19 ARDS, although the confidence intervals for these estimates include moderate differences. Patients with COVID-19 had lower neutrophil counts but did not differ in lymphocyte count or other measures of systemic inflammation. Conclusions: In this single-center cohort, we found no evidence for large differences between COVID-19 and non-COVID-19 ARDS. Many key clinical features of severe COVID-19 were similar to those of non-COVID-19 ARDS, including respiratory physiology and clinical outcomes, although our sample size precludes definitive conclusions. Further studies are needed to define COVID-19-specific pathophysiology before a deviation from evidence-based treatment practices can be recommended.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2
6.
Children & Libraries ; 18(4):4-6, 2020.
Article in English | ProQuest Central | ID: covidwho-1060165

ABSTRACT

On March 17, 2020, the Free Library of Philadelphia closed its physical locations in response to the COVID-19 pandemic. Although our buildings were closed, library workers continued to generate online content and promote the library’s electronic services to the general public.

SELECTION OF CITATIONS
SEARCH DETAIL