Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Med (Lausanne) ; 9: 848639, 2022.
Article in English | MEDLINE | ID: covidwho-1793008

ABSTRACT

Background: The role of excessive inspiratory effort in promoting alveolar and pleural rupture resulting in air leak (AL) in patients with SARS-CoV-2 induced acute respiratory failure (ARF) while on spontaneous breathing is undetermined. Methods: Among all patients with COVID-19 related ARF admitted to a respiratory intensive care unit (RICU) and receiving non-invasive respiratory support, those developing an AL were and matched 1:1 [by means of PaO2/FiO2 ratio, age, body mass index-BMI and subsequent organ failure assessment (SOFA)] with a comparable population who did not (NAL group). Esophageal pressure (ΔPes) and dynamic transpulmonary pressure (ΔPL) swings were compared between groups. Risk factors affecting AL onset were evaluated. The composite outcome of ventilator-free-days (VFD) at day 28 (including ETI, mortality, tracheostomy) was compared between groups. Results: Air leak and NAL groups (n = 28) showed similar ΔPes, whereas AL had higher ΔPL (20 [16-21] and 17 [11-20], p = 0.01, respectively). Higher ΔPL (OR = 1.5 95%CI[1-1.8], p = 0.01), positive end-expiratory pressure (OR = 2.4 95%CI[1.2-5.9], p = 0.04) and pressure support (OR = 1.8 95%CI[1.1-3.5], p = 0.03), D-dimer on admission (OR = 2.1 95%CI[1.3-9.8], p = 0.03), and features suggestive of consolidation on computed tomography scan (OR = 3.8 95%CI[1.1-15], p = 0.04) were all significantly associated with AL. A lower VFD score resulted in a higher risk (HR = 3.7 95%CI [1.2-11.3], p = 0.01) in the AL group compared with NAL. RICU stay and 90-day mortality were also higher in the AL group compared with NAL. Conclusion: In spontaneously breathing patients with COVID-19 related ARF, higher levels of ΔPL, blood D-dimer, NIV delivery pressures and a consolidative lung pattern were associated with AL onset.

3.
BMC Pulm Med ; 21(1): 307, 2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-1440925

ABSTRACT

BACKGROUND: The main clinical consequences of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection are pneumonia and respiratory failure even requiring mechanical ventilation. In this context, the lung parenchyma is highly prone to ventilator-related injury, with pneumothorax and persistent air leak as the most serious adverse events. So far, endobronchial valve (EBV) positioning has proved efficacious in treating air leaks with a high success rate. CASE PRESENTATION: We report, for the first time, two cases of patients affected by SARS-CoV-2-related pneumonia complicated with bacterial super-infection, experiencing pneumothorax and persistent air leaks after invasive mechanical ventilation. Despite the severity of respiratory failure both patients underwent rigid interventional bronchoscopy and were successfully treated through EBV positioning. CONCLUSIONS: Persistent air leaks may result from lung tissue damage due to a complex interaction between inflammation and ventilator-related injury (VILI), especially in the advanced stages of ARDS. EBV positioning seems to be a feasible and effective minimally invasive therapeutic option for treating this subset of patients.


Subject(s)
Bronchial Fistula/surgery , COVID-19/therapy , Pleural Diseases/surgery , Pneumothorax/surgery , Respiration, Artificial/adverse effects , Aged , Bronchoscopy/methods , COVID-19/diagnosis , Humans , Intensive Care Units , Male , Respiratory Tract Fistula/surgery , SARS-CoV-2/genetics , Tomography, X-Ray Computed
4.
Pulmonology ; 28(3): 181-192, 2022.
Article in English | MEDLINE | ID: covidwho-1144904

ABSTRACT

BACKGROUND/MATERIALS AND METHODS: This retrospective cohort study was conducted in two teaching hospitals over a 3-month period (March 2010-June 2020) comparing severe and critical COVID-19 patients admitted to Respiratory Intensive Care Unit for non-invasive respiratory support (NRS) and subjected to awake prone position (PP) with those receiving standard care (SC). Primary outcome was endotracheal intubation (ETI) rate. In-hospital mortality, time to ETI, tracheostomy, length of RICU and hospital stay served as secondary outcomes. Risk factors associated to ETI among PP patients were also investigated. RESULTS: A total of 114 patients were included, 76 in the SC and 38 in the PP group. Unadjusted Kaplan-Meier estimates showed greater effect of PP compared to SC on ETI rate (HR = 0.45 95% CI [0.2-0.9], p = 0.02) even after adjustment for baseline confounders (HR = 0.59 95% CI [0.3-0.94], p = 0.03). After stratification according to non-invasive respiratory support, PP showed greater significant benefit for those on High Flow Nasal Cannulae (HR = 0.34 95% CI [0.12-0.84], p = 0.04). Compared to SC, PP patients also showed a favorable difference in terms of days free from respiratory support, length of RICU and hospital stay while mortality and tracheostomy rate were not significantly different. CONCLUSIONS: Prone positioning in awake and spontaneously breathing Covid-19 patients is feasible and associated with a reduction of intubation rate, especially in those patients undergoing HFNC. Although our results are intriguing, further randomized controlled trials are needed to answer all the open questions remaining pending about the real efficacy of PP in this setting.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Humans , Respiratory Insufficiency/etiology , Retrospective Studies , Wakefulness
5.
J Clin Med ; 10(5)2021 Mar 02.
Article in English | MEDLINE | ID: covidwho-1125725

ABSTRACT

The mechanisms of acute respiratory failure other than inflammation and complicating the SARS-CoV-2 infection are still far from being fully understood, thus challenging the management of COVID-19 patients in the critical care setting. In this unforeseen scenario, the role of an individual's excessive spontaneous breathing may acquire critical importance, being one potential and important driver of lung injury and disease progression. The consequences of this acute lung damage may impair lung structure, forecasting the model of a fragile respiratory system. This perspective article aims to analyze the progression of injured lung phenotypes across the SARS-CoV-2 induced respiratory failure, pointing out the role of spontaneous breathing and also tackling the specific respiratory/ventilatory strategy required by the fragile lung type.

SELECTION OF CITATIONS
SEARCH DETAIL