Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307411


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of novel coronavirus disease 2019 (COVID-19)1. SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) as a cellular receptor and enters cells via clathrin-mediated endocytosis (CME)2-4. However, the key molecules involved in internalizing and facilitating CME for virus entry remain unknown. Here, we found metabotropic glutamate receptor subtype 2 (mGluR2) is a key entry receptor for SARS-CoV-2 infection. mGluR2 directly interacts with the SARS-CoV-2 spike protein. Knockdown of mGluR2 decreases endocytosis of SARS-CoV-2 but not cell binding. mGluR2 cooperates with ACE2 to facilitate SARS-CoV-2 entry through CME. Knockout of the mGluR2 gene in mice abolished SARS-CoV-2 infection in the nasal turbinates and significantly reduced viral infection in the lungs. Importantly, mGluR2 also is important for severe acute respiratory syndrome coronavirus spike protein and Middle East respiratory syndrome coronavirus spike protein mediated endocytosis. Our study provides important insights into SARS-CoV-2 infection and reveals an important target for the development of novel approaches to limit coronavirus infection.