ABSTRACT
[This corrects the article DOI: 10.2196/31400.].
ABSTRACT
BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.
Subject(s)
COVID-19 , Pandemics , Adult , Aged , Female , Hospitalization , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2ABSTRACT
Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale.
Subject(s)
Biomedical Research , Computer Security , Coronavirus Infections , Information Dissemination , Pandemics , Pneumonia, Viral , Privacy , COVID-19 , Humans , Information Dissemination/ethics , Internationality , Machine LearningABSTRACT
Objectives: To perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions. Design: Retrospective cohort study. Setting: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe. Participants: Patients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2. Primary and secondary outcome measures: Patients were categorized as ''ever-severe'' or ''never-severe'' using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction. Results: Of 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites. Conclusions: Laboratory test values at admission can be used to predict severity in patients with COVID-19. There is a need for prediction models that will perform well over the course of the disease in hospitalized patients.
Subject(s)
COVID-19ABSTRACT
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented a crisis for global healthcare systems. Human SARS-CoV-2 infection can result in coronavirus disease 2019 (COVID-19), which has been characterised as an acute respiratory illness, with most patients displaying flu-like symptoms, such as a fever, cough and dyspnoea. However, the range and severity of individual symptoms experienced by patients can vary significantly, indicating a role for host genetics in impacting the susceptibility and severity of COVID-19 disease. Whilst most symptomatic infections are known to manifest in mild to moderate respiratory symptoms, severe pneumonia and complications including cytokine release syndrome, which can lead to multi-organ dysfunction, have also been observed in cases worldwide. Global initiatives to sequence the genomes of patients with COVID-19 have driven an expanding new field of host genomics research, to characterise the genetic determinants of COVID-19 disease. The functional annotation and analysis of incoming genomic data, within a clinically relevant turnaround time, is therefore imperative given the importance and urgency of research efforts to understand the biology of SARS-CoV-2 infection and disease. To address these requirements, we developed SNPnexus COVID. This is a web-based variant annotation tool, powered by the SNPnexus software.
Subject(s)
Coronavirus Infections , Cough , Respiratory Insufficiency , Signs and Symptoms, Respiratory , Pneumonia , Fever , COVID-19ABSTRACT
Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) is the gold standard as diagnostic assays for the detection of COVID-19 and the specificity and sensitivity of these assays depend on the complementarity of the RT-PCR primers to the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the virus mutates over time during replication cycles, there is an urgent need to continuously monitor the virus genome for appearances of mutations and mismatches in the PCR primers used in these assays. Here we present assayM, a web application to explore and monitor mutations introduced in the primer and probe sequences published by the World Health Organisation (WHO) or in any custom-designed assay primers for SARS-CoV-2 detection assays in globally available SARS-CoV-2 genome datasets.
Subject(s)
Coronavirus Infections , COVID-19ABSTRACT
Since the first identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in late December 2019, the coronavirus disease 2019 (COVID-19) has spread fast around the world. RNA viruses, including SARS-CoV-2, have higher gene mutations than DNA viruses during virus replication. Variations in SARS-CoV-2 genome could contribute to efficiency of viral spread and severity of COVID-19. In this study, we analyzed the locations of genomic mutations to investigate the genetic diversity among isolates of SARS-CoV-2 in Gwangju. We detected non-synonymous and frameshift mutations in various parts of SARS-CoV-2 genome. The phylogenetic analysis for whole genome showed that SARS-CoV-2 genomes in Gwangju isolates are clustered within clade V and G. Our findings not only provide a glimpse into changes of prevalent virus clades in Gwangju, South Korea, but also support genomic surveillance of SARS-CoV-2 to aid in the development of efficient therapeutic antibodies and vaccines against COVID-19.
Subject(s)
Coronavirus Infections , COVID-19ABSTRACT
Our understanding of protective vs. pathologic immune responses to SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses reveal widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, with the most profound disturbances including a prominent neutrophil hyperactivation signature and monocytes with anti-inflammatory features. We further demonstrate that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
Subject(s)
COVID-19ABSTRACT
We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across five countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.