Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Viruses ; 14(4):733, 2022.
Article in English | MDPI | ID: covidwho-1776352

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a late complication of measles virus infection that occurs in previously healthy children. This disease has no specific cure and is associated with a high degree of disability and mortality. In recent years, there has been an increase in its incidence in relation to a reduction in vaccination adherence, accentuated by the COVID-19 pandemic. In this article, we take stock of the current evidence on SSPE and report our personal clinical experience. We emphasise that, to date, the only effective protection strategy against this disease is vaccination against the measles virus.

2.
Front Immunol ; 12: 750386, 2021.
Article in English | MEDLINE | ID: covidwho-1515534

ABSTRACT

Antibodies targeting Receptor Binding Domain (RBD) of SARS-CoV-2 have been suggested to account for the majority of neutralizing activity in COVID-19 convalescent sera and several neutralizing antibodies (nAbs) have been isolated, characterized and proposed as emergency therapeutics in the form of monoclonal antibodies (mAbs). However, SARS-CoV-2 variants are rapidly spreading worldwide from the sites of initial identification. The variants of concern (VOC) B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.167.2 (Delta) showed mutations in the SARS-CoV-2 spike protein potentially able to cause escape from nAb responses with a consequent reduction of efficacy of vaccines and mAbs-based therapy. We produced the recombinant RBD (rRBD) of SARS-CoV-2 spike glycoprotein from the Wuhan-Hu 1 reference sequence in a mammalian system, for mice immunization to isolate new mAbs with neutralizing activity. Here we describe four mAbs that were able to bind the rRBD in Enzyme-Linked Immunosorbent Assay and the transmembrane full-length spike protein expressed in HEK293T cells by flow cytometry assay. Moreover, the mAbs recognized the RBD in supernatants of SARS-CoV-2 infected VERO E6 cells by Western Blot under non-reducing condition or in supernatants of cells infected with lentivirus pseudotyped for spike protein, by immunoprecipitation assay. Three out of four mAbs lost their binding efficiency to completely N-deglycosylated rRBD and none was able to bind the same recombinant protein expressed in Escherichia coli, suggesting that the epitopes recognized by three mAbs are generated by the conformational structure of the glycosylated native protein. Of particular relevance, three mAbs were able to inhibit Wuhan SARS-CoV-2 infection of VERO E6 cells in a plaque-reduction neutralization test and the Wuhan SARS-CoV-2 as well as the Alpha, Beta, Gamma and Delta VOC in a pseudoviruses-based neutralization test. These mAbs represent important additional tools for diagnosis and therapy of COVID-19 and may contribute to the understanding of the functional structure of SARS-CoV-2 RBD.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Epitopes/immunology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites, Antibody/immunology , COVID-19/drug therapy , Cell Line, Tumor , Chlorocebus aethiops , Female , Glycosylation , HEK293 Cells , Humans , Mice, Inbred BALB C , Neutralization Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
3.
Antioxidants (Basel) ; 10(11)2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1512080

ABSTRACT

The COVID-19 pandemic represents an unprecedented global emergency. Despite all efforts, COVID-19 remains a threat to public health, due to the complexity of mass vaccination programs, the lack of effective drugs, and the emergence of new variants. A link has recently been found between the risk of developing a severe COVID-19 infection and a high level of oxidative stress. In this context, we have focused our attention on natural compounds with the aim of finding molecules capable of acting through a dual virucidal-antioxidant mechanism. In particular, we studied the potential of grapefruit seed extracts (GSE) and their main components, belonging to the class of limonoids. Using chemical and biological approaches including isolation and purification of GSE, antioxidant and virucidal assays, we have shown that grapefruit seed constituents, belonging to the class of limonoids, are endowed with remarkable virucidal, antioxidant and mitoprotective activity.

SELECTION OF CITATIONS
SEARCH DETAIL