Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell Reports Medicine ; : 100850, 2022.
Article in English | ScienceDirect | ID: covidwho-2119975

ABSTRACT

Summary The emergence of Omicron sublineages impact the therapeutic efficacy of anti-SARS-CoV-2 monoclonal antibodies (mAbs). Here, we evaluate neutralization and ADCC activities of 6 therapeutic mAbs against Delta, BA.2, BA.4 and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to Bebtelovimab and Cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (Imdevimab + Casirivimab) or Evusheld (Cilgavimab + Tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.

2.
J Virol ; 96(19): e0130122, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2038240

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained genetically stable during the first 3 months of the pandemic, before acquiring a D614G spike mutation that rapidly spread worldwide and then generating successive waves of viral variants with increasingly high transmissibility. We set out to evaluate possible epistatic interactions between the early-occurring D614G mutation and the more recently emerged cleavage site mutations present in spike of the Alpha, Delta, and Omicron variants of concern. The P681H/R mutations at the S1/S2 cleavage site increased spike processing and fusogenicity but limited its incorporation into pseudoviruses. In addition, the higher cleavage rate led to higher shedding of the spike S1 subunit, resulting in a lower infectivity of the P681H/R-carrying pseudoviruses compared to those expressing the Wuhan wild-type spike. The D614G mutation increased spike expression at the cell surface and limited S1 shedding from pseudovirions. As a consequence, the D614G mutation preferentially increased the infectivity of P681H/R-carrying pseudoviruses. This enhancement was more marked in cells where the endosomal route predominated, suggesting that more stable spikes could better withstand the endosomal environment. Taken together, these findings suggest that the D614G mutation stabilized S1/S2 association and enabled the selection of mutations that increased S1/S2 cleavage, leading to the emergence of SARS-CoV-2 variants expressing highly fusogenic spikes. IMPORTANCE The first SARS-CoV-2 variant that spread worldwide in early 2020 carried a D614G mutation in the viral spike, making this protein more stable in its cleaved form at the surface of virions. The Alpha and Delta variants, which spread in late 2020 and early 2021, respectively, proved increasingly transmissible and pathogenic compared to the original strain. Interestingly, Alpha and Delta both carried the mutations P681H/R in a cleavage site that made the spike more cleaved and more efficient at mediating viral fusion. We show here that variants with increased spike cleavage due to P681H/R were even more dependent on the stabilizing effect of the D614G mutation, which limited the shedding of cleaved S1 subunits from viral particles. These findings suggest that the worldwide spread of the D614G mutation was a prerequisite for the emergence of more pathogenic SARS-CoV-2 variants with highly fusogenic spikes.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
3.
J Virol ; 96(14): e0060822, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1973789

ABSTRACT

Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2/genetics , Animals , Humans , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
4.
EBioMedicine ; 77: 103934, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1739673

ABSTRACT

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Viral , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
5.
Nature ; 602(7898): 671-675, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616994

ABSTRACT

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Immune Evasion/immunology , Immunization, Secondary , SARS-CoV-2/immunology , Adult , Antibodies, Monoclonal/immunology , /immunology , Belgium , COVID-19/immunology , COVID-19/transmission , /immunology , Convalescence , Female , Humans , Male , Mutation , Neutralization Tests , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Travel
6.
J Mol Biol ; 434(6): 167280, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1446877

ABSTRACT

Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.


Subject(s)
COVID-19 , Giant Cells , Interferons , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , COVID-19/immunology , COVID-19/virology , Giant Cells/virology , Humans , Immunity, Innate , Interferons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics
7.
EMBO J ; 40(24): e108944, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1444546

ABSTRACT

Severe COVID-19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when SARS-CoV-2 spike protein expressed on the surface of infected cells interacts with the ACE2 receptor on neighboring cells. The syncytia forming potential of spike variant proteins remain poorly characterized. Here, we first assessed Alpha (B.1.1.7) and Beta (B.1.351) spread and fusion in cell cultures, compared with the ancestral D614G strain. Alpha and Beta replicated similarly to D614G strain in Vero, Caco-2, Calu-3, and primary airway cells. However, Alpha and Beta formed larger and more numerous syncytia. Variant spike proteins displayed higher ACE2 affinity compared with D614G. Alpha, Beta, and D614G fusion was similarly inhibited by interferon-induced transmembrane proteins (IFITMs). Individual mutations present in Alpha and Beta spikes modified fusogenicity, binding to ACE2 or recognition by monoclonal antibodies. We further show that Delta spike also triggers faster fusion relative to D614G. Thus, SARS-CoV-2 emerging variants display enhanced syncytia formation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/pharmacology , Giant Cells/virology , Mutation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Giant Cells/drug effects , Giant Cells/metabolism , HEK293 Cells , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Vero Cells , Virus Replication/drug effects
9.
Cell Rep Med ; 2(5): 100275, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1193507

ABSTRACT

Many SARS-CoV-2-infected individuals remain asymptomatic. Little is known about the extent and quality of their antiviral humoral response. Here, we analyze antibody functions in 52 asymptomatic infected individuals, 119 mildly symptomatic, and 21 hospitalized patients with COVID-19. We measure anti-spike immunoglobulin G (IgG), IgA, and IgM levels with the S-Flow assay and map IgG-targeted epitopes with a Luminex assay. We also evaluate neutralization, complement deposition, and antibody-dependent cellular cytotoxicity (ADCC) using replication-competent SARS-CoV-2 or reporter cell systems. We show that COVID-19 sera mediate complement deposition and kill infected cells by ADCC. Sera from asymptomatic individuals neutralize the virus, activate ADCC, and trigger complement deposition. Antibody levels and functions are lower in asymptomatic individuals than they are in symptomatic cases. Antibody functions are correlated, regardless of disease severity. Longitudinal samplings show that antibody functions follow similar kinetics of induction and contraction. Overall, asymptomatic SARS-CoV-2 infection elicits polyfunctional antibodies neutralizing the virus and targeting infected cells.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Antigen-Antibody Reactions , Asymptomatic Diseases , COVID-19/virology , Complement System Proteins/metabolism , Epitopes/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Killer Cells, Natural/immunology , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index , Young Adult
10.
Nat Med ; 27(5): 917-924, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152868

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Convalescence , Cross Reactions , Humans , Neutralization Tests , Sensitivity and Specificity , Vaccination
11.
J Extracell Vesicles ; 10(2): e12050, 2020 12.
Article in English | MEDLINE | ID: covidwho-1064378

ABSTRACT

SARS-CoV-2 entry is mediated by binding of the spike protein (S) to the surface receptor ACE2 and subsequent priming by host TMPRSS2 allowing membrane fusion. Here, we produced extracellular vesicles (EVs) exposing ACE2 and demonstrate that ACE2-EVs are efficient decoys for SARS-CoV-2 S protein-containing lentivirus. Reduction of infectivity positively correlates with the level of ACE2, is much more efficient than with soluble ACE2 and further enhanced by the inclusion of TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/prevention & control , COVID-19/virology , Angiotensin-Converting Enzyme 2/physiology , Caco-2 Cells/virology , Cell Line/virology , Extracellular Vesicles/metabolism , Humans , Lentivirus , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus , Virus Internalization
12.
Sci Transl Med ; 12(559)2020 09 02.
Article in English | MEDLINE | ID: covidwho-724557

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Flow Cytometry/methods , France/epidemiology , Healthy Volunteers , Humans , Immunoprecipitation/methods , Luciferases , Male , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Translational Research, Biomedical , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL