Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Year range
Embase; 2021.
Preprint in English | EMBASE | ID: ppcovidwho-330496


The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in severely ill, hospitalized donors, and are cross-reactive against diverse SARS-CoV-2 variants, including the extremely neutralization resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.

Preprint in English | EMBASE | ID: ppcovidwho-326997


The SARS-CoV-2 Omicron variant has multiple Spike (S) protein mutations that contribute to escape from the neutralizing antibody responses, and reducing vaccine protection from infection. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. We assessed the ability of T cells to react with Omicron spike in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, and in unvaccinated convalescent COVID-19 patients (n = 70). We found that 70-80% of the CD4 and CD8 T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar to that of the Beta and Delta variants, despite Omicron harbouring considerably more mutations. Additionally, in Omicron-infected hospitalized patients (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those found in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). These results demonstrate that despite Omicron’s extensive mutations and reduced susceptibility to neutralizing antibodies, the majority of T cell response, induced by vaccination or natural infection, crossrecognises the variant. Well-preserved T cell immunity to Omicron is likely to contribute to protection from severe COVID-19, supporting early clinical observations from South Africa.

Southern African Journal of Infectious Diseases ; 36(1), 2021.
Article in English | EMBASE | ID: covidwho-1348731


Background: Serology testing is an important ancillary diagnostic to the reverse transcriptase polymerase chain reaction (RT-PCR) test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to evaluate the performance of the Roche Elecsys™ chemiluminescent immunoassay (Rotkreuz, Switzerland), that detects antibodies against the SARS-CoV-2 nucleocapsid antigen, at an academic laboratory in South Africa. Methods: Serum samples were collected from 312 donors with confirmed positive SARS-CoV-2 RT-PCR tests, with approval from a large university’s human research ethics committee. Negative controls included samples stored prior to December 2019 and from patients who tested negative for SARS-CoV-2 on RT-PCR and were confirmed negative using multiple serology methods (n = 124). Samples were stored at –80 °C and analysed on a Roche cobas™ 602 autoanalyser. Results: Compared with RT-PCR, our evaluation revealed a specificity of 100% and overall sensitivity of 65.1%. The sensitivity in individuals > 14 days’ post-diagnosis was 72.6%, with the highest sensitivity 31–50 days’ post-diagnosis at 88.6%. Results were also compared with in-house serology tests that showed high agreement in majority of categories. Conclusions: The sensitivity at all-time points post-diagnosis was lower than reported in other studies, but sensitivity in appropriate cohorts approached 90% with a high specificity. The lower sensitivity at earlier time points or in individuals without symptomatology may indicate failure to produce antibodies, which was further supported by the comparison against in-house serology tests.

Viruses ; 13(5):28, 2021.
Article in English | MEDLINE | ID: covidwho-1208416


The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.