Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
PLoS One ; 17(10): e0276509, 2022.
Article in English | MEDLINE | ID: covidwho-2089433

ABSTRACT

OBJECTIVE(S): To use machine learning (ML) to predict short-term requirements for invasive ventilation in patients with COVID-19 admitted to Australian intensive care units (ICUs). DESIGN: A machine learning study within a national ICU COVID-19 registry in Australia. PARTICIPANTS: Adult patients who were spontaneously breathing and admitted to participating ICUs with laboratory-confirmed COVID-19 from 20 February 2020 to 7 March 2021. Patients intubated on day one of their ICU admission were excluded. MAIN OUTCOME MEASURES: Six machine learning models predicted the requirement for invasive ventilation by day three of ICU admission from variables recorded on the first calendar day of ICU admission; (1) random forest classifier (RF), (2) decision tree classifier (DT), (3) logistic regression (LR), (4) K neighbours classifier (KNN), (5) support vector machine (SVM), and (6) gradient boosted machine (GBM). Cross-validation was used to assess the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of machine learning models. RESULTS: 300 ICU admissions collected from 53 ICUs across Australia were included. The median [IQR] age of patients was 59 [50-69] years, 109 (36%) were female and 60 (20%) required invasive ventilation on day two or three. Random forest and Gradient boosted machine were the best performing algorithms, achieving mean (SD) AUCs of 0.69 (0.06) and 0.68 (0.07), and mean sensitivities of 77 (19%) and 81 (17%), respectively. CONCLUSION: Machine learning can be used to predict subsequent ventilation in patients with COVID-19 who were spontaneously breathing and admitted to Australian ICUs.


Subject(s)
COVID-19 , Noninvasive Ventilation , Adult , Humans , Middle Aged , Aged , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/therapy , Australia/epidemiology , Machine Learning
2.
Aust Crit Care ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2041584

ABSTRACT

BACKGROUND: The COVID-19 pandemic has deeply impacted patient and family communication and patient- and family-centred care in the intensive care unit (ICU). A new role-the ICU Family Liaison Nurse (FLN)-was introduced in an Australian metropolitan hospital ICU to facilitate communication between patient and family and ICU healthcare professionals, although there is limited knowledge about the impact of this from the ICU healthcare professionals' perspectives. OBJECTIVE: The aim of this study was to explore the impact of the ICU FLN role on communication with patients and their family during the COVID-19 pandemic, from the ICU healthcare professionals' perspectives. METHODS: A qualitative descriptive study was conducted. Seven participants including ICU FLNs, ICU doctors, nurses, and social workers who worked with the ICU FLNs were interviewed. Thematic analysis was used to analyse the data. RESULTS: Two main themes related to the ICU FLN role were identified. First, the COVID-19 pandemic posed challenges to patient and family communication, but it also created opportunities to improve patient and family communication. Second, the ICU FLN role brought beneficial impacts to the ICU healthcare professionals' workflow and work experience, as well as patient and family communication. The ICU FLN role has potential benefits that extend beyond the pandemic. CONCLUSION: We found that during the COVID-19 pandemic, the ICU FLN role was acceptable, beneficial, and appreciated from the ICU healthcare professionals' perspectives. Further research should continue the evaluation of the ICU FLN role during and post the pandemic.

3.
Intern Med J ; 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-2037999

ABSTRACT

BACKGROUND: Vaccination has been shown to be highly effective in preventing death and severe disease from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Currently, few studies have directly compared vaccinated and unvaccinated patients with severe COVID-19 in the intensive care unit (ICU). AIMS: To compare the clinical characteristics and outcomes of vaccine recipients and unvaccinated patients with SARS-CoV-2 infection admitted to the ICU in a nationwide setting. METHODS: Data were extracted from the Short PeRiod IncideNce sTudy of Severe Acute Respiratory Infection Australia, in 57 ICU during Delta and Omicron predominant periods of the COVID-19 pandemic. The primary outcome was inhospital mortality. Secondary outcomes included duration of mechanical ventilation, ICU length of stay, hospital length of stay and ICU mortality. RESULTS:  There were 2970 patients admitted to ICU across participating sites from 26 June 2021 to 8 February 2022; 1134 (38.2%) patients were vaccine recipients, and 1836 (61.8%) patients were unvaccinated. Vaccine recipients were older, more comorbid and less likely to require organ support. Unadjusted inhospital mortality was greater in the vaccinated cohort. After adjusting for age, gender and comorbid status, no statistically significant association between inhospital or ICU mortality, and vaccination status, was apparent. CONCLUSION: We found COVID-19 infection can cause severe disease and death in vaccine recipients, though comorbid status and older age were significant contributors to mortality. Organ support requirements and the number of deaths were highest in the unvaccinated cohort.

4.
Baruch, Joaquin, Rojek, Amanda, Kartsonaki, Christiana, Vijayaraghavan, Bharath K. T.; Gonçalves, Bronner P.; Pritchard, Mark G.; Merson, Laura, Dunning, Jake, Hall, Matthew, Sigfrid, Louise, Citarella, Barbara W.; Murthy, Srinivas, Yeabah, Trokon O.; Olliaro, Piero, Abbas, Ali, Abdukahil, Sheryl Ann, Abdulkadir, Nurul Najmee, Abe, Ryuzo, Abel, Laurent, Absil, Lara, Acharya, Subhash, Acker, Andrew, Adam, Elisabeth, Adrião, Diana, Al Ageel, Saleh, Ahmed, Shakeel, Ainscough, Kate, Airlangga, Eka, Aisa, Tharwat, Hssain, Ali Ait, Tamlihat, Younes Ait, Akimoto, Takako, Akmal, Ernita, Al Qasim, Eman, Alalqam, Razi, Alberti, Angela, Al‐dabbous, Tala, Alegesan, Senthilkumar, Alegre, Cynthia, Alessi, Marta, Alex, Beatrice, Alexandre, Kévin, Al‐Fares, Abdulrahman, Alfoudri, Huda, Ali, Imran, Ali, Adam, Shah, Naseem Ali, Alidjnou, Kazali Enagnon, Aliudin, Jeffrey, Alkhafajee, Qabas, Allavena, Clotilde, Allou, Nathalie, Altaf, Aneela, Alves, João, Alves, Rita, Alves, João Melo, Amaral, Maria, Amira, Nur, Ampaw, Phoebe, Andini, Roberto, Andréjak, Claire, Angheben, Andrea, Angoulvant, François, Ansart, Séverine, Anthonidass, Sivanesen, Antonelli, Massimo, de Brito, Carlos Alexandre Antunes, Apriyana, Ardiyan, Arabi, Yaseen, Aragao, Irene, Araujo, Carolline, Arcadipane, Antonio, Archambault, Patrick, Arenz, Lukas, Arlet, Jean‐Benoît, Arora, Lovkesh, Arora, Rakesh, Artaud‐Macari, Elise, Aryal, Diptesh, Asensio, Angel, Ashraf, Muhammad, Asif, Namra, Asim, Mohammad, Assie, Jean Baptiste, Asyraf, Amirul, Atique, Anika, Attanyake, A. M. Udara Lakshan, Auchabie, Johann, Aumaitre, Hugues, Auvet, Adrien, Axelsen, Eyvind W.; Azemar, Laurène, Azoulay, Cecile, Bach, Benjamin, Bachelet, Delphine, Badr, Claudine, Bævre‐Jensen, Roar, Baig, Nadia, Baillie, J. Kenneth, Baird, J. Kevin, Bak, Erica, Bakakos, Agamemnon, Bakar, Nazreen Abu, Bal, Andriy, Balakrishnan, Mohanaprasanth, Balan, Valeria, Bani‐Sadr, Firouzé, Barbalho, Renata, Barbosa, Nicholas Yuri, Barclay, Wendy S.; Barnett, Saef Umar, Barnikel, Michaela, Barrasa, Helena, Barrelet, Audrey, Barrigoto, Cleide, Bartoli, Marie, Baruch, Joaquín, Bashir, Mustehan, Basmaci, Romain, Basri, Muhammad Fadhli Hassin, Battaglini, Denise, Bauer, Jules, Rincon, Diego Fernando Bautista, Dow, Denisse Bazan, Beane, Abigail, Bedossa, Alexandra, Bee, Ker Hong, Begum, Husna, Behilill, Sylvie, Beishuizen, Albertus, Beljantsev, Aleksandr, Bellemare, David, Beltrame, Anna, Beltrão, Beatriz Amorim, Beluze, Marine, Benech, Nicolas, Benjiman, Lionel Eric, Benkerrou, Dehbia, Bennett, Suzanne, Bento, Luís, Berdal, Jan‐Erik, Bergeaud, Delphine, Bergin, Hazel, Sobrino, José Luis Bernal, Bertoli, Giulia, Bertolino, Lorenzo, Bessis, Simon, Bevilcaqua, Sybille, Bezulier, Karine, Bhatt, Amar, Bhavsar, Krishna, Bianco, Claudia, Bidin, Farah Nadiah, Singh, Moirangthem Bikram, Humaid, Felwa Bin, Kamarudin, Mohd Nazlin Bin, Bissuel, François, Bitker, Laurent, Bitton, Jonathan, Blanco‐Schweizer, Pablo, Blier, Catherine, Bloos, Frank, Blot, Mathieu, Boccia, Filomena, Bodenes, Laetitia, Bogaarts, Alice, Bogaert, Debby, Boivin, Anne‐Hélène, Bolze, Pierre‐Adrien, Bompart, François, Bonfasius, Aurelius, Borges, Diogo, Borie, Raphaël, Bosse, Hans Martin, Botelho‐Nevers, Elisabeth, Bouadma, Lila, Bouchaud, Olivier, Bouchez, Sabelline, Bouhmani, Dounia, Bouhour, Damien, Bouiller, Kévin, Bouillet, Laurence, Bouisse, Camile, Boureau, Anne‐Sophie, Bourke, John, Bouscambert, Maude, Bousquet, Aurore, Bouziotis, Jason, Boxma, Bianca, Boyer‐Besseyre, Marielle, Boylan, Maria, Bozza, Fernando Augusto, Braconnier, Axelle, Braga, Cynthia, Brandenburger, Timo, Monteiro, Filipa Brás, Brazzi, Luca, Breen, Patrick, Breen, Dorothy, Breen, Patrick, Brickell, Kathy, Browne, Shaunagh, Browne, Alex, Brozzi, Nicolas, Brunvoll, Sonja Hjellegjerde, Brusse‐Keizer, Marjolein, Buchtele, Nina, Buesaquillo, Christian, Bugaeva, Polina, Buisson, Marielle, Buonsenso, Danilo, Burhan, Erlina, Burrell, Aidan, Bustos, Ingrid G.; Butnaru, Denis, Cabie, André, Cabral, Susana, Caceres, Eder, Cadoz, Cyril, Calligy, Kate, Calvache, Jose Andres, Camões, João, Campana, Valentine, Campbell, Paul, Campisi, Josie, Canepa, Cecilia, Cantero, Mireia, Caraux‐Paz, Pauline, Cárcel, Sheila, Cardellino, Chiara Simona, Cardoso, Sofia, Cardoso, Filipe, Cardoso, Filipa, Cardoso, Nelson, Carelli, Simone, Carlier, Nicolas, Carmoi, Thierry, Carney, Gayle, Carqueja, Inês, Carret, Marie‐Christine, Carrier, François Martin, Carroll, Ida, Carson, Gail, Casanova, Maire‐Laure, Cascão, Mariana, Casey, Siobhan, Casimiro, José, Cassandra, Bailey, Castañeda, Silvia, Castanheira, Nidyanara, Castor‐Alexandre, Guylaine, Castrillón, Henry, Castro, Ivo, Catarino, Ana, Catherine, François‐Xavier, Cattaneo, Paolo, Cavalin, Roberta, Cavalli, Giulio Giovanni, Cavayas, Alexandros, Ceccato, Adrian, Cervantes‐Gonzalez, Minerva, Chair, Anissa, Chakveatze, Catherine, Chan, Adrienne, Chand, Meera, Auger, Christelle Chantalat, Chapplain, Jean‐Marc, Chas, Julie, Chatterjee, Allegra, Chaudry, Mobin, Iñiguez, Jonathan Samuel Chávez, Chen, Anjellica, Chen, Yih‐Sharng, Cheng, Matthew Pellan, Cheret, Antoine, Chiarabini, Thibault, Chica, Julian, Chidambaram, Suresh Kumar, Tho, Leong Chin, Chirouze, Catherine, Chiumello, Davide, Cho, Sung‐Min, Cholley, Bernard, Chopin, Marie‐Charlotte, Chow, Ting Soo, Chow, Yock Ping, Chua, Jonathan, Chua, Hiu Jian, Cidade, Jose Pedro, Herreros, José Miguel Cisneros, Citarella, Barbara Wanjiru, Ciullo, Anna, Clarke, Jennifer, Clarke, Emma, Granado, Rolando Claure‐Del, Clohisey, Sara, Cobb, Perren J.; Codan, Cassidy, Cody, Caitriona, Coelho, Alexandra, Coles, Megan, Colin, Gwenhaël, Collins, Michael, Colombo, Sebastiano Maria, Combs, Pamela, Connor, Marie, Conrad, Anne, Contreras, Sofía, Conway, Elaine, Cooke, Graham S.; Copland, Mary, Cordel, Hugues, Corley, Amanda, Cornelis, Sabine, Cornet, Alexander Daniel, Corpuz, Arianne Joy, Cortegiani, Andrea, Corvaisier, Grégory, Costigan, Emma, Couffignal, Camille, Couffin‐Cadiergues, Sandrine, Courtois, Roxane, Cousse, Stéphanie, Cregan, Rachel, Croonen, Sabine, Crowl, Gloria, Crump, Jonathan, Cruz, Claudina, Bermúdez, Juan Luis Cruz, Rojo, Jaime Cruz, Csete, Marc, Cullen, Ailbhe, Cummings, Matthew, Curley, Gerard, Curlier, Elodie, Curran, Colleen, Custodio, Paula, da Silva Filipe, Ana, Da Silveira, Charlene, Dabaliz, Al‐Awwab, Dagens, Andrew, Dahl, John Arne, Dahly, Darren, Dalton, Heidi, Dalton, Jo, Daly, Seamus, Daneman, Nick, Daniel, Corinne, Dankwa, Emmanuelle A.; Dantas, Jorge, D'Aragon, Frédérick, de Loughry, Gillian, de Mendoza, Diego, De Montmollin, Etienne, de Oliveira França, Rafael Freitas, de Pinho Oliveira, Ana Isabel, De Rosa, Rosanna, De Rose, Cristina, de Silva, Thushan, de Vries, Peter, Deacon, Jillian, Dean, David, Debard, Alexa, Debray, Marie‐Pierre, DeCastro, Nathalie, Dechert, William, Deconninck, Lauren, Decours, Romain, Defous, Eve, Delacroix, Isabelle, Delaveuve, Eric, Delavigne, Karen, Delfos, Nathalie M.; Deligiannis, Ionna, Dell'Amore, Andrea, Delmas, Christelle, Delobel, Pierre, Delsing, Corine, Demonchy, Elisa, Denis, Emmanuelle, Deplanque, Dominique, Depuydt, Pieter, Desai, Mehul, Descamps, Diane, Desvallées, Mathilde, Dewayanti, Santi, Dhanger, Pathik, Diallo, Alpha, Diamantis, Sylvain, Dias, André, Diaz, Juan Jose, Diaz, Priscila, Diaz, Rodrigo, Didier, Kévin, Diehl, Jean‐Luc, Dieperink, Wim, Dimet, Jérôme, Dinot, Vincent, Diop, Fara, Diouf, Alphonsine, Dishon, Yael, Djossou, Félix, Docherty, Annemarie B.; Doherty, Helen, Dondorp, Arjen M.; Donnelly, Maria, Donnelly, Christl A.; Donohue, Sean, Donohue, Yoann, Donohue, Chloe, Doran, Peter, Dorival, Céline, D'Ortenzio, Eric, Douglas, James Joshua, Douma, Renee, Dournon, Nathalie, Downer, Triona, Downey, Joanne, Downing, Mark, Drake, Tom, Driscoll, Aoife, Dryden, Murray, Fonseca, Claudio Duarte, Dubee, Vincent, Dubos, François, Ducancelle, Alexandre, Duculan, Toni, Dudman, Susanne, Duggal, Abhijit, Dunand, Paul, Dunning, Jake, Duplaix, Mathilde, Durante‐Mangoni, Emanuele, Durham, Lucian, Dussol, Bertrand, Duthoit, Juliette, Duval, Xavier, Dyrhol‐Riise, Anne Margarita, Ean, Sim Choon, Echeverria‐Villalobos, Marco, Egan, Siobhan, Eggesbø, Linn Margrete, Eira, Carla, El Sanharawi, Mohammed, Elapavaluru, Subbarao, Elharrar, Brigitte, Ellerbroek, Jacobien, Ellingjord‐Dale, Merete, Eloy, Philippine, Elshazly, Tarek, Elyazar, Iqbal, Enderle, Isabelle, Endo, Tomoyuki, Eng, Chan Chee, Engelmann, Ilka, Enouf, Vincent, Epaulard, Olivier, Escher, Martina, Esperatti, Mariano, Esperou, Hélène, Esposito‐Farese, Marina, Estevão, João, Etienne, Manuel, Ettalhaoui, Nadia, Everding, Anna Greti, Evers, Mirjam, Fabre, Marc, Fabre, Isabelle, Faheem, Amna, Fahy, Arabella, Fairfield, Cameron J.; Fakar, Zul, Fareed, Komal, Faria, Pedro, Farooq, Ahmed, Fateena, Hanan, Fatoni, Arie Zainul, Faure, Karine, Favory, Raphaël, Fayed, Mohamed, Feely, Niamh, Feeney, Laura, Fernandes, Jorge, Fernandes, Marília Andreia, Fernandes, Susana, Ferrand, François‐Xavier, Devouge, Eglantine Ferrand, Ferrão, Joana, Ferraz, Mário, Ferreira, Sílvia, Ferreira, Isabel, Ferreira, Benigno, Ferrer‐Roca, Ricard, Ferriere, Nicolas, Ficko, Céline, Figueiredo‐Mello, Claudia, Finlayson, William, Fiorda, Juan, Flament, Thomas, Flateau, Clara, Fletcher, Tom, Florio, Letizia Lucia, Flynn, Deirdre, Foley, Claire, Foley, Jean, Fomin, Victor, Fonseca, Tatiana, Fontela, Patricia, Forsyth, Simon, Foster, Denise, Foti, Giuseppe, Fourn, Erwan, Fowler, Robert A.; Fraher, Marianne, Franch‐Llasat, Diego, Fraser, John F.; Fraser, Christophe, Freire, Marcela Vieira, Ribeiro, Ana Freitas, Friedrich, Caren, Fry, Stéphanie, Fuentes, Nora, Fukuda, Masahiro, Argin, G.; Gaborieau, Valérie, Gaci, Rostane, Gagliardi, Massimo, Gagnard, Jean‐Charles, Gagneux‐Brunon, Amandine, Gaião, Sérgio, Skeie, Linda Gail, Gallagher, Phil, Gamble, Carrol, Gani, Yasmin, Garan, Arthur, Garcia, Rebekha, Barrio, Noelia García, Garcia‐Diaz, Julia, Garcia‐Gallo, Esteban, Garimella, Navya, Garot, Denis, Garrait, Valérie, Gauli, Basanta, Gault, Nathalie, Gavin, Aisling, Gavrylov, Anatoliy, Gaymard, Alexandre, Gebauer, Johannes, Geraud, Eva, Morlaes, Louis Gerbaud, Germano, Nuno, Ghisulal, Praveen Kumar, Ghosn, Jade, Giani, Marco, Gibson, Jess, Gigante, Tristan, Gilg, Morgane, Gilroy, Elaine, Giordano, Guillermo, Girvan, Michelle, Gissot, Valérie, Glikman, Daniel, Glybochko, Petr, Gnall, Eric, Goco, Geraldine, Goehringer, François, Goepel, Siri, Goffard, Jean‐Christophe, Goh, Jin Yi, Golob, Jonathan, Gomez, Kyle, Gómez‐Junyent, Joan, Gominet, Marie, Gonçalves, Bronner P.; Gonzalez, Alicia, Gordon, Patricia, Gorenne, Isabelle, Goubert, Laure, Goujard, Cécile, Goulenok, Tiphaine, Grable, Margarite, Graf, Jeronimo, Grandin, Edward Wilson, Granier, Pascal, Grasselli, Giacomo, Green, Christopher A.; Greene, Courtney, Greenhalf, William, Greffe, Segolène, Grieco, Domenico Luca, Griffee, Matthew, Griffiths, Fiona, Grigoras, Ioana, Groenendijk, Albert, Lordemann, Anja Grosse, Gruner, Heidi, Gu, Yusing, Guedj, Jérémie, Guego, Martin, Guellec, Dewi, Guerguerian, Anne‐Marie, Guerreiro, Daniela, Guery, Romain, Guillaumot, Anne, Guilleminault, Laurent, Guimarães de Castro, Maisa, Guimard, Thomas, Haalboom, Marieke, Haber, Daniel, Habraken, Hannah, Hachemi, Ali, Hackmann, Amy, Hadri, Nadir, Haidri, Fakhir, Hakak, Sheeba, Hall, Adam, Hall, Matthew, Halpin, Sophie, Hameed, Jawad, Hamer, Ansley, Hamers, Raph L.; Hamidfar, Rebecca, Hammarström, Bato, Hammond, Terese, Han, Lim Yuen, Haniffa, Rashan, Hao, Kok Wei, Hardwick, Hayley, Harrison, Ewen M.; Harrison, Janet, Harrison, Samuel Bernard Ekow, Hartman, Alan, Hasan, Mohd Shahnaz, Hashmi, Junaid, Hayat, Muhammad, Hayes, Ailbhe, Hays, Leanne, Heerman, Jan, Heggelund, Lars, Hendry, Ross, Hennessy, Martina, Henriquez‐Trujillo, Aquiles, Hentzien, Maxime, Hernandez‐Montfort, Jaime, Hershey, Andrew, Hesstvedt, Liv, Hidayah, Astarini, Higgins, Eibhilin, Higgins, Dawn, Higgins, Rupert, Hinchion, Rita, Hinton, Samuel, Hiraiwa, Hiroaki, Hirkani, Haider, Hitoto, Hikombo, Ho, Yi Bin, Ho, Antonia, Hoctin, Alexandre, Hoffmann, Isabelle, Hoh, Wei Han, Hoiting, Oscar, Holt, Rebecca, Holter, Jan Cato, Horby, Peter, Horcajada, Juan Pablo, Hoshino, Koji, Houas, Ikram, Hough, Catherine L.; Houltham, Stuart, Hsu, Jimmy Ming‐Yang, Hulot, Jean‐Sébastien, Huo, Stella, Hurd, Abby, Hussain, Iqbal, Ijaz, Samreen, Illes, Hajnal‐Gabriela, Imbert, Patrick, Imran, Mohammad, Sikander, Rana Imran, Imtiaz, Aftab, Inácio, Hugo, Dominguez, Carmen Infante, Ing, Yun Sii, Iosifidis, Elias, Ippolito, Mariachiara, Isgett, Sarah, Isidoro, Tiago, Ismail, Nadiah, Isnard, Margaux, Istre, Mette Stausland, Itai, Junji, Ivulich, Daniel, Jaafar, Danielle, Jaafoura, Salma, Jabot, Julien, Jackson, Clare, Jamieson, Nina, Jaquet, Pierre, Jaud‐Fischer, Coline, Jaureguiberry, Stéphane, Jaworsky, Denise, Jego, Florence, Jelani, Anilawati Mat, Jenum, Synne, Jimbo‐Sotomayor, Ruth, Joe, Ong Yiaw, Jorge García, Ruth N.; Jørgensen, Silje Bakken, Joseph, Cédric, Joseph, Mark, Joshi, Swosti, Jourdain, Mercé, Jouvet, Philippe, Jung, Hanna, Jung, Anna, Juzar, Dafsah, Kafif, Ouifiya, Kaguelidou, Florentia, Kaisbain, Neerusha, Kaleesvran, Thavamany, Kali, Sabina, Kalicinska, Alina, Kalleberg, Karl Trygve, Kalomoiri, Smaragdi, Kamaluddin, Muhammad Aisar Ayadi, Kamaruddin, Zul Amali Che, Kamarudin, Nadiah, Kamineni, Kavita, Kandamby, Darshana Hewa, Kandel, Chris, Kang, Kong Yeow, Kanwal, Darakhshan, Karpayah, Pratap, Kartsonaki, Christiana, Kasugai, Daisuke, Kataria, Anant, Katz, Kevin, Kaur, Aasmine, Kay, Christy, Keane, Hannah, Keating, Seán, Kedia, Pulak, Kelly, Claire, Kelly, Yvelynne, Kelly, Andrea, Kelly, Niamh, Kelly, Aoife, Kelly, Sadie, Kelsey, Maeve, Kennedy, Ryan, Kennon, Kalynn, Kernan, Maeve, Kerroumi, Younes, Keshav, Sharma, Khalid, Imrana, Khalid, Osama, Khalil, Antoine, Khan, Coralie, Khan, Irfan, Khan, Quratul Ain, Khanal, Sushil, Khatak, Abid, Khawaja, Amin, Kherajani, Krish, Kho, Michelle E.; Khoo, Ryan, Khoo, Denisa, Khoo, Saye, Khoso, Nasir, Kiat, Khor How, Kida, Yuri, Kiiza, Peter, Granerud, Beathe Kiland, Kildal, Anders Benjamin, Kim, Jae Burm, Kimmoun, Antoine, Kindgen‐Milles, Detlef, King, Alexander, Kitamura, Nobuya, Kjetland, Eyrun Floerecke Kjetland, Klenerman, Paul, Klont, Rob, Bekken, Gry Kloumann, Knight, Stephen R.; Kobbe, Robin, Kodippily, Chamira, Vasconcelos, Malte Kohns, Koirala, Sabin, Komatsu, Mamoru, Kosgei, Caroline, Kpangon, Arsène, Krawczyk, Karolina, Krishnan, Vinothini, Krishnan, Sudhir, Kruglova, Oksana, Kumar, Ganesh, Kumar, Deepali, Kumar, Mukesh, Vecham, Pavan Kumar, Kuriakose, Dinesh, Kurtzman, Ethan, Kutsogiannis, Demetrios, Kutsyna, Galyna, Kyriakoulis, Konstantinos, Lachatre, Marie, Lacoste, Marie, Laffey, John G.; Lagrange, Marie, Laine, Fabrice, Lairez, Olivier, Lakhey, Sanjay, Lalueza, Antonio, Lambert, Marc, Lamontagne, François, Langelot‐Richard, Marie, Langlois, Vincent, Lantang, Eka Yudha, Lanza, Marina, Laouénan, Cédric, Laribi, Samira, Lariviere, Delphine, Lasry, Stéphane, Lath, Sakshi, Latif, Naveed, Launay, Odile, Laureillard, Didier, Lavie‐Badie, Yoan, Law, Andy, Lawrence, Teresa, Lawrence, Cassie, Le, Minh, Le Bihan, Clément, Le Bris, Cyril, Le Falher, Georges, Le Fevre, Lucie, Le Hingrat, Quentin, Le Maréchal, Marion, Le Mestre, Soizic, Le Moal, Gwenaël, Le Moing, Vincent, Le Nagard, Hervé, Le Turnier, Paul, Leal, Ema, Santos, Marta Leal, Lee, Heng Gee, Lee, Biing Horng, Lee, Yi Lin, Lee, Todd C.; Lee, James, Lee, Jennifer, Lee, Su Hwan, Leeming, Gary, Lefebvre, Laurent, Lefebvre, Bénédicte, Lefèvre, Benjamin, LeGac, Sylvie, Lelievre, Jean‐Daniel, Lellouche, François, Lemaignen, Adrien, Lemee, Véronique, Lemeur, Anthony, Lemmink, Gretchen, Lene, Ha Sha, Lennon, Jenny, León, Rafael, Leone, Marc, Leone, Michela, Lepiller, Quentin, Lescure, François‐Xavier, Lesens, Olivier, Lesouhaitier, Mathieu, Lester‐Grant, Amy, Levy, Yves, Levy, Bruno, Levy‐Marchal, Claire, Lewandowska, Katarzyna, L'Her, Erwan, Bassi, Gianluigi Li, Liang, Janet, Liaquat, Ali, Liegeon, Geoffrey, Lim, Kah Chuan, Lim, Wei Shen, Lima, Chantre, Lina, Lim, Lina, Bruno, Lind, Andreas, Lingad, Maja Katherine, Lingas, Guillaume, Lion‐Daolio, Sylvie, Lissauer, Samantha, Liu, Keibun, Livrozet, Marine, Lizotte, Patricia, Loforte, Antonio, Lolong, Navy, Loon, Leong Chee, Lopes, Diogo, Lopez‐Colon, Dalia, Lopez‐Revilla, Jose W.; Loschner, Anthony L.; Loubet, Paul, Loufti, Bouchra, Louis, Guillame, Lourenco, Silvia, Lovelace‐Macon, Lara, Low, Lee Lee, Lowik, Marije, Loy, Jia Shyi, Lucet, Jean Christophe, Bermejo, Carlos Lumbreras, Luna, Carlos M.; Lungu, Olguta, Luong, Liem, Luque, Nestor, Luton, Dominique, Lwin, Nilar, Lyons, Ruth, Maasikas, Olavi, Mabiala, Oryane, Machado, Moïse, Macheda, Gabriel, Madiha, Hashmi, Maestro de la Calle, Guillermo, Mahieu, Rafael, Mahy, Sophie, Maia, Ana Raquel, Maier, Lars S.; Maillet, Mylène, Maitre, Thomas, Malfertheiner, Maximilian, Malik, Nadia, Mallon, Paddy, Maltez, Fernando, Malvy, Denis, Manda, Victoria, Mandelbrot, Laurent, Manetta, Frank, Mankikian, Julie, Manning, Edmund, Manuel, Aldric, Sant'Ana Malaque, Ceila Maria, Marino, Flávio, Marino, Daniel, Markowicz, Samuel, Maroun Eid, Charbel, Marques, Ana, Marquis, Catherine, Marsh, Brian, Marsh, Laura, Marshal, Megan, Marshall, John, Martelli, Celina Turchi, Martin, Dori‐Ann, Martin, Emily, Martin‐Blondel, Guillaume, Martin‐Loeches, Ignacio, Martinot, Martin, Martin‐Quiros, Alejandro, Martins, João, Martins, Ana, Martins, Nuno, Rego, Caroline Martins, Martucci, Gennaro, Martynenko, Olga, Marwali, Eva Miranda, Marzukie, Marsilla, Maslove, David, Mason, Sabina, Masood, Sobia, Nor, Basri Mat, Matan, Moshe, Mathew, Meghena, Mathieu, Daniel, Mattei, Mathieu, Matulevics, Romans, Maulin, Laurence, Maxwell, Michael, Maynar, Javier, Mazzoni, Thierry, Evoy, Natalie Mc, Sweeney, Lisa Mc, McArthur, Colin, McArthur, Colin, McCarthy, Anne, McCarthy, Aine, McCloskey, Colin, McConnochie, Rachael, McDermott, Sherry, McDonald, Sarah E.; McElroy, Aine, McElwee, Samuel, McEneany, Victoria, McGeer, Allison, McKay, Chris, McKeown, Johnny, McLean, Kenneth A.; McNally, Paul, McNicholas, Bairbre, McPartlan, Elaine, Meaney, Edel, Mear‐Passard, Cécile, Mechlin, Maggie, Meher, Maqsood, Mehkri, Omar, Mele, Ferruccio, Melo, Luis, Memon, Kashif, Mendes, Joao Joao, Menkiti, Ogechukwu, Menon, Kusum, Mentré, France, Mentzer, Alexander J.; Mercier, Noémie, Mercier, Emmanuelle, Merckx, Antoine, Mergeay‐Fabre, Mayka, Mergler, Blake, Merson, Laura, Mesquita, António, Meta, Roberta, Metwally, Osama, Meybeck, Agnès, Meyer, Dan, Meynert, Alison M.; Meysonnier, Vanina, Meziane, Amina, Mezidi, Mehdi, Michelanglei, Céline, Michelet, Isabelle, Mihelis, Efstathia, Mihnovit, Vladislav, Miranda‐Maldonado, Hugo, Misnan, Nor Arisah, Mohamed, Tahira Jamal, Mohamed, Nik Nur Eliza, Moin, Asma, Molina, David, Molinos, Elena, Molloy, Brenda, Mone, Mary, Monteiro, Agostinho, Montes, Claudia, Montrucchio, Giorgia, Moore, Shona C.; Moore, Sarah, Cely, Lina Morales, Moro, Lucia, Morton, Ben, Motherway, Catherine, Motos, Ana, Mouquet, Hugo, Perrot, Clara Mouton, Moyet, Julien, Mudara, Caroline, Mufti, Aisha Kalsoom, Muh, Ng Yong, Muhamad, Dzawani, Mullaert, Jimmy, Müller, Fredrik, Müller, Karl Erik, Munblit, Daniel, Muneeb, Syed, Munir, Nadeem, Munshi, Laveena, Murphy, Aisling, Murphy, Lorna, Murphy, Aisling, Murris, Marlène, Murthy, Srinivas, Musaab, Himed, Muvindi, Himasha, Muyandy, Gugapriyaa, Myrodia, Dimitra Melia, Mohd‐Hanafiah, Farah Nadia, Nagpal, Dave, Nagrebetsky, Alex, Narasimhan, Mangala, Narayanan, Nageswaran, Khan, Rashid Nasim, Nazerali‐Maitland, Alasdair, Neant, Nadège, Neb, Holger, Nekliudov, Nikita, Nelwan, Erni, Neto, Raul, Neumann, Emily, Ng, Pauline Yeung, Ng, Wing Yiu, Nghi, Anthony, Nguyen, Duc, Choileain, Orna Ni, Leathlobhair, Niamh Ni, Nichol, Alistair, Nitayavardhana, Prompak, Nonas, Stephanie, Noordin, Nurul Amani Mohd, Noret, Marion, Norharizam, Nurul Faten Izzati, Norman, Lisa, Notari, Alessandra, Noursadeghi, Mahdad, Nowicka, Karolina, Nowinski, Adam, Nseir, Saad, Nunez, Jose I.; Nurnaningsih, Nurnaningsih, Nusantara, Dwi Utomo, Nyamankolly, Elsa, Nygaard, Anders Benteson, Brien, Fionnuala O.; Callaghan, Annmarie O.; O'Callaghan, Annmarie, Occhipinti, Giovanna, Oconnor, Derbrenn, O'Donnell, Max, Ogston, Tawnya, Ogura, Takayuki, Oh, Tak‐Hyuk, O'Halloran, Sophie, O'Hearn, Katie, Ohshimo, Shinichiro, Oldakowska, Agnieszka, Oliveira, João, Oliveira, Larissa, Olliaro, Piero L.; Ong, Jee Yan, Ong, David S. Y.; Oosthuyzen, Wilna, Opavsky, Anne, Openshaw, Peter, Orakzai, Saijad, Orozco‐Chamorro, Claudia Milena, Ortoleva, Jamel, Osatnik, Javier, O'Shea, Linda, O'Sullivan, Miriam, Othman, Siti Zubaidah, Ouamara, Nadia, Ouissa, Rachida, Oziol, Eric, Pagadoy, Maïder, Pages, Justine, Palacios, Mario, Palacios, Amanda, Palmarini, Massimo, Panarello, Giovanna, Panda, Prasan Kumar, Paneru, Hem, Pang, Lai Hui, Panigada, Mauro, Pansu, Nathalie, Papadopoulos, Aurélie, Parke, Rachael, Parker, Melissa, Parra, Briseida, Pasha, Taha, Pasquier, Jérémie, Pastene, Bruno, Patauner, Fabian, Patel, Drashti, Pathmanathan, Mohan Dass, Patrão, Luís, Patricio, Patricia, Patrier, Juliette, Patterson, Lisa, Pattnaik, Rajyabardhan, Paul, Mical, Paul, Christelle, Paulos, Jorge, Paxton, William A.; Payen, Jean‐François, Peariasamy, Kalaiarasu, Jiménez, Miguel Pedrera, Peek, Giles J.; Peelman, Florent, Peiffer‐Smadja, Nathan, Peigne, Vincent, Pejkovska, Mare, Pelosi, Paolo, Peltan, Ithan D.; Pereira, Rui, Perez, Daniel, Periel, Luis, Perpoint, Thomas, Pesenti, Antonio, Pestre, Vincent, Petrou, Lenka, Petrovic, Michele, Petrov‐Sanchez, Ventzislava, Pettersen, Frank Olav, Peytavin, Gilles, Pharand, Scott, Picard, Walter, Picone, Olivier, de Piero, Maria, Pierobon, Carola, Piersma, Djura, Pimentel, Carlos, Pinto, Raquel, Pires, Catarina, Pironneau, Isabelle, Piroth, Lionel, Pitaloka, Ayodhia, Pius, Riinu, Plantier, Laurent, Png, Hon Shen, Poissy, Julien, Pokeerbux, Ryadh, Pokorska‐Spiewak, Maria, Poli, Sergio, Pollakis, Georgios, Ponscarme, Diane, Popielska, Jolanta, Porto, Diego Bastos, Post, Andra‐Maris, Postma, Douwe F.; Povoa, Pedro, Póvoas, Diana, Powis, Jeff, Prapa, Sofia, Preau, Sébastien, Prebensen, Christian, Preiser, Jean‐Charles, Prinssen, Anton, Pritchard, Mark G.; Priyadarshani, Gamage Dona Dilanthi, Proença, Lucia, Pudota, Sravya, Puéchal, Oriane, Semedi, Bambang Pujo, Pulicken, Mathew, Purcell, Gregory, Quesada, Luisa, Quinones‐Cardona, Vilmaris, González, Víctor Quirós, Quist‐Paulsen, Else, Quraishi, Mohammed, Rabaa, Maia, Rabaud, Christian, Rabindrarajan, Ebenezer, Rafael, Aldo, Rafiq, Marie, Rahardjani, Mutia, Rahman, Rozanah Abd, Rahman, Ahmad Kashfi Haji Ab, Rahutullah, Arsalan, Rainieri, Fernando, Rajahram, Giri Shan, Ramachandran, Pratheema, Ramakrishnan, Nagarajan, Ramli, Ahmad Afiq, Rammaert, Blandine, Ramos, Grazielle Viana, Rana, Asim, Rangappa, Rajavardhan, Ranjan, Ritika, Rapp, Christophe, Rashan, Aasiyah, Rashan, Thalha, Rasheed, Ghulam, Rasmin, Menaldi, Rätsep, Indrek, Rau, Cornelius, Ravi, Tharmini, Raza, Ali, Real, Andre, Rebaudet, Stanislas, Redl, Sarah, Reeve, Brenda, Rehman, Attaur, Reid, Liadain, Reikvam, Dag Henrik, Reis, Renato, Rello, Jordi, Remppis, Jonathan, Remy, Martine, Ren, Hongru, Renk, Hanna, Resseguier, Anne‐Sophie, Revest, Matthieu, Rewa, Oleksa, Reyes, Luis Felipe, Reyes, Tiago, Ribeiro, Maria Ines, Ricchiuto, Antonia, Richardson, David, Richardson, Denise, Richier, Laurent, Ridzuan, Siti Nurul Atikah Ahmad, Riera, Jordi, Rios, Ana L.; Rishu, Asgar, Rispal, Patrick, Risso, Karine, Nuñez, Maria Angelica Rivera, Rizer, Nicholas, Robba, Chiara, Roberto, André, Roberts, Stephanie, Robertson, David L.; Robineau, Olivier, Roche‐Campo, Ferran, Rodari, Paola, Rodeia, Simão, Abreu, Julia Rodriguez, Roessler, Bernhard, Roger, Pierre‐Marie, Roger, Claire, Roilides, Emmanuel, Rojek, Amanda, Romaru, Juliette, Roncon‐Albuquerque, Roberto, Roriz, Mélanie, Rosa‐Calatrava, Manuel, Rose, Michael, Rosenberger, Dorothea, Roslan, Nurul Hidayah Mohammad, Rossanese, Andrea, Rossetti, Matteo, Rossignol, Bénédicte, Rossignol, Patrick, Rousset, Stella, Roy, Carine, Roze, Benoît, Rusmawatiningtyas, Desy, Russell, Clark D.; Ryan, Maria, Ryan, Maeve, Ryckaert, Steffi, Holten, Aleksander Rygh, Saba, Isabela, Sadaf, Sairah, Sadat, Musharaf, Sahraei, Valla, Saint‐Gilles, Maximilien, Sakiyalak, Pranya, Salahuddin, Nawal, Salazar, Leonardo, Saleem, Jodat, Sales, Gabriele, Sallaberry, Stéphane, Salmon Gandonniere, Charlotte, Salvator, Hélène, Sanchez, Olivier, Sanchez‐Miralles, Angel, Sancho‐Shimizu, Vanessa, Sandhu, Gyan, Sandhu, Zulfiqar, Sandrine, Pierre‐François, Sandulescu, Oana, Santos, Marlene, Sarfo‐Mensah, Shirley, Banheiro, Bruno Sarmento, Sarmiento, Iam Claire E.; Sarton, Benjamine, Satya, Ankana, Satyapriya, Sree, Satyawati, Rumaisah, Saviciute, Egle, Savvidou, Parthena, Saw, Yen Tsen, Schaffer, Justin, Schermer, Tjard, Scherpereel, Arnaud, Schneider, Marion, Schroll, Stephan, Schwameis, Michael, Schwartz, Gary, Scott, Janet T.; Scott‐Brown, James, Sedillot, Nicholas, Seitz, Tamara, Selvanayagam, Jaganathan, Selvarajoo, Mageswari, Semaille, Caroline, Semple, Malcolm G.; Senian, Rasidah Bt, Senneville, Eric, Sequeira, Filipa, Sequeira, Tânia, Neto, Ary Serpa, Balazote, Pablo Serrano, Shadowitz, Ellen, Shahidan, Syamin Asyraf, Shamsah, Mohammad, Shankar, Anuraj, Sharjeel, Shaikh, Sharma, Pratima, Shaw, Catherine A.; Shaw, Victoria, Sheharyar, Ashraf, Shetty, Rohan, Shetty, Rajesh Mohan, Shi, Haixia, Shiekh, Mohiuddin, Shime, Nobuaki, Shimizu, Keiki, Shrapnel, Sally, Shrestha, Pramesh Sundar, Shrestha, Shubha Kalyan, Shum, Hoi Ping, Mohammed, Nassima Si, Siang, Ng Yong, Sibiude, Jeanne, Siddiqui, Atif, Sigfrid, Louise, Sillaots, Piret, Silva, Catarina, Silva, Rogério, Silva, Maria Joao, Heng, Benedict Sim Lim, Sin, Wai Ching, Sinatti, Dario, Singh, Punam, Singh, Budha Charan, Sitompul, Pompini Agustina, Sivam, Karisha, Skogen, Vegard, Smith, Sue, Smood, Benjamin, Smyth, Coilin, Smyth, Michelle, Snacken, Morgane, So, Dominic, Soh, Tze Vee, Solberg, Lene Bergendal, Solomon, Joshua, Solomon, Tom, Somers, Emily, Sommet, Agnès, Song, Rima, Song, Myung Jin, Song, Tae, Chia, Jack Song, Sonntagbauer, Michael, Soom, Azlan Mat, Søraas, Arne, Søraas, Camilla Lund, Sotto, Alberto, Soum, Edouard, Sousa, Marta, Sousa, Ana Chora, Uva, Maria Sousa, Souza‐Dantas, Vicente, Sperry, Alexandra, Spinuzza, Elisabetta, Darshana, B. P. Sanka Ruwan Sri, Sriskandan, Shiranee, Stabler, Sarah, Staudinger, Thomas, Stecher, Stephanie‐Susanne, Steinsvik, Trude, Stienstra, Ymkje, Stiksrud, Birgitte, Stolz, Eva, Stone, Amy, Streinu‐Cercel, Adrian, Streinu‐Cercel, Anca, Stuart, David, Stuart, Ami, Subekti, Decy, Suen, Gabriel, Suen, Jacky Y.; Sultana, Asfia, Summers, Charlotte, Supic, Dubravka, Suppiah, Deepashankari, Surovcová, Magdalena, Suwarti, Suwarti, Svistunov, Andrey, Syahrin, Sarah, Syrigos, Konstantinos, Sztajnbok, Jaques, Szuldrzynski, Konstanty, Tabrizi, Shirin, Taccone, Fabio S.; Tagherset, Lysa, Taib, Shahdattul Mawarni, Talarek, Ewa, Taleb, Sara, Talsma, Jelmer, Tamisier, Renaud, Tampubolon, Maria Lawrensia, Tan, Kim Keat, Tan, Yan Chyi, Tanaka, Taku, Tanaka, Hiroyuki, Taniguchi, Hayato, Taqdees, Huda, Taqi, Arshad, Tardivon, Coralie, Tattevin, Pierre, Taufik, M. Azhari, Tawfik, Hassan, Tedder, Richard S.; Tee, Tze Yuan, Teixeira, João, Tejada, Sofia, Tellier, Marie‐Capucine, Teoh, Sze Kye, Teotonio, Vanessa, Téoulé, François, Terpstra, Pleun, Terrier, Olivier, Terzi, Nicolas, Tessier‐Grenier, Hubert, Tey, Adrian, Thabit, Alif Adlan Mohd, Thakur, Anand, Tham, Zhang Duan, Thangavelu, Suvintheran, Thibault, Vincent, Thiberville, Simon‐Djamel, Thill, Benoît, Thirumanickam, Jananee, Thompson, Shaun, Thomson, Emma C.; Thurai, Surain Raaj Thanga, Thwaites, Ryan S.; Tierney, Paul, Tieroshyn, Vadim, Timashev, Peter S.; Timsit, Jean‐François, Vijayaraghavan, Bharath Kumar Tirupakuzhi, Tissot, Noémie, Toh, Jordan Zhien Yang, Toki, Maria, Tonby, Kristian, Tonnii, Sia Loong, Torres, Margarida, Torres, Antoni, Santos‐Olmo, Rosario Maria Torres, Torres‐Zevallos, Hernando, Towers, Michael, Trapani, Tony, Treoux, Théo, Tromeur, Cécile, Trontzas, Ioannis, Trouillon, Tiffany, Truong, Jeanne, Tual, Christelle, Tubiana, Sarah, Tuite, Helen, Turmel, Jean‐Marie, Turtle, Lance C. W.; Tveita, Anders, Twardowski, Pawel, Uchiyama, Makoto, Udayanga, P. G. Ishara, Udy, Andrew, Ullrich, Roman, Uribe, Alberto, Usman, Asad.
Influenza and Other Respiratory Viruses ; 2022.
Article in English | Web of Science | ID: covidwho-2019369

ABSTRACT

Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe arid Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years;geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did riot meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.

5.
Med J Aust ; 217(7): 352-360, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-1884637

ABSTRACT

OBJECTIVE: To compare the demographic and clinical features, management, and outcomes for patients admitted with COVID-19 to intensive care units (ICUs) during the first, second, and third waves of the pandemic in Australia. DESIGN, SETTING, AND PARTICIPANTS: People aged 16 years or more admitted with polymerase chain reaction-confirmed COVID-19 to the 78 Australian ICUs participating in the Short Period Incidence Study of Severe Acute Respiratory Infection (SPRINT-SARI) Australia project during the first (27 February - 30 June 2020), second (1 July 2020 - 25 June 2021), and third COVID-19 waves (26 June - 1 November 2021). MAIN OUTCOME MEASURES: Primary outcome: in-hospital mortality. SECONDARY OUTCOMES: ICU mortality; ICU and hospital lengths of stay; supportive and disease-specific therapies. RESULTS: 2493 people (1535 men, 62%) were admitted to 59 ICUs: 214 during the first (9%), 296 during the second (12%), and 1983 during the third wave (80%). The median age was 64 (IQR, 54-72) years during the first wave, 58 (IQR, 49-68) years during the second, and 54 (IQR, 41-65) years during the third. The proportion without co-existing illnesses was largest during the third wave (41%; first wave, 32%; second wave, 29%). The proportion of ICU beds occupied by patients with COVID-19 was 2.8% (95% CI, 2.7-2.9%) during the first, 4.6% (95% CI, 4.3-5.1%) during the second, and 19.1% (95% CI, 17.9-20.2%) during the third wave. Non-invasive (42% v 15%) and prone ventilation strategies (63% v 15%) were used more frequently during the third wave than during the first two waves. Thirty patients (14%) died in hospital during the first wave, 35 (12%) during the second, and 281 (17%) during the third. After adjusting for age, illness severity, and other covariates, the risk of in-hospital mortality was similar for the first and second waves, but 9.60 (95% CI, 3.52-16.7) percentage points higher during the third than the first wave. CONCLUSION: The demographic characteristics of patients in intensive care with COVID-19 and the treatments they received during the third pandemic wave differed from those of the first two waves. Adjusted in-hospital mortality was highest during the third wave.


Subject(s)
COVID-19 , Pandemics , Australia/epidemiology , COVID-19/epidemiology , COVID-19/therapy , Critical Care , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged
6.
Aust Crit Care ; 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1866894

ABSTRACT

BACKGROUND: Internationally, diabetes mellitus is recognised as a risk factor for severe COVID-19. The relationship between diabetes mellitus and severe COVID-19 has not been reported in the Australian population. OBJECTIVE: The objective of this study was to determine the prevalence of and outcomes for patients with diabetes admitted to Australian intensive care units (ICUs) with COVID-19. METHODS: This is a nested cohort study of four ICUs in Melbourne participating in the Short Period Incidence Study of Severe Acute Respiratory Infection (SPRINT-SARI) Australia project. All adult patients admitted to the ICU with COVID-19 from 20 February 2020 to 27 February 2021 were included. Blood glucose and glycated haemoglobin (HbA1c) data were retrospectively collected. Diabetes was diagnosed from medical history or an HbA1c ≥6.5% (48 mmol/mol). Hospital mortality was assessed using logistic regression. RESULTS: There were 136 patients with median age 58 years [48-68] and median Acute Physiology and Chronic Health Evaluation II (APACHE II) score of 14 [11-19]. Fifty-eight patients had diabetes (43%), 46 patients had stress-induced hyperglycaemia (34%), and 32 patients had normoglycaemia (23%). Patients with diabetes were older, were with higher APACHE II scores, had greater glycaemic variability than patients with normoglycaemia, and had longer hospital length of stay. Overall hospital mortality was 16% (22/136), including nine patients with diabetes, nine patients with stress-induced hyperglycaemia, and two patients with normoglycaemia. CONCLUSION: Diabetes is prevalent in patients admitted to Australian ICUs with severe COVID-19, highlighting the need for prevention strategies in this vulnerable population.

7.
Crit Care ; 26(1): 141, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1846858

ABSTRACT

BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.


Subject(s)
COVID-19 , Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Aged , COVID-19/drug therapy , Female , Humans , Intensive Care Units , Male , Middle Aged , Neuromuscular Blocking Agents/therapeutic use , Propensity Score , Respiration, Artificial , Respiratory Distress Syndrome/drug therapy
8.
Am J Respir Crit Care Med ; 205(10): 1159-1168, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1846610

ABSTRACT

Rationale: The outcomes of survivors of critical illness due to coronavirus disease (COVID-19) compared with non-COVID-19 are yet to be established. Objectives: We aimed to investigate new disability at 6 months in mechanically ventilated patients admitted to Australian ICUs with COVID-19 compared with non-COVID-19. Methods: We included critically ill patients with COVID-19 and non-COVID-19 from two prospective observational studies. Patients were eligible if they were adult (age ⩾ 8 yr) and received ⩾24 hours of mechanical ventilation. In addition, patients with COVID-19 were eligible with a positive laboratory PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Measurements and Main Results: Demographic, intervention, and hospital outcome data were obtained from electronic medical records. Survivors were contacted by telephone for functional outcomes with trained outcome assessors using the World Health Organization Disability Assessment Schedule 2.0. Between March 6, 2020, and April 21, 2021, 120 critically ill patients with COVID-19, and between August 2017 and January 2019, 199 critically ill patients without COVID-19, fulfilled the inclusion criteria. Patients with COVID-19 were older (median [interquartile range], 62 [55-71] vs. 58 [44-69] yr; P = 0.019) with a lower Acute Physiology and Chronic Health Evaluation II score (17 [13-20] vs. 19 [15-23]; P = 0.011). Although duration of ventilation was longer in patients with COVID-19 than in those without COVID-19 (12 [5-19] vs. 4.8 [2.3-8.8] d; P < 0.001), 180-day mortality was similar between the groups (39/120 [32.5%] vs. 70/199 [35.2%]; P = 0.715). The incidence of death or new disability at 180 days was similar (58/93 [62.4%] vs. 99/150 [66/0%]; P = 0.583). Conclusions: At 6 months, there was no difference in new disability for patients requiring mechanical ventilation for acute respiratory failure due to COVID-19 compared with non-COVID-19. Clinical trial registered with www.clinicaltrials.gov (NCT04401254).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Australia/epidemiology , Critical Illness , Humans , Respiration, Artificial , Survivors
9.
J Clin Virol Plus ; 1(4): 100054, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1734706

ABSTRACT

Purpose: To determine the frequency of nosocomial infections including hospital-acquired pneumonia (HAP) and bloodstream infection (BSI), amongst critically ill patients with COVID-19 infection in Australian ICUs and to evaluate associations with mortality and length of stay (LOS). Methods: The effect of nosocomial infections on hospital mortality was evaluated using hierarchical logistic regression models to adjust for illness severity and mechanical ventilation. Results: There were 490 patients admitted to 55 ICUs during the study period. Adjusted odds ratio (OR) for hospital mortality was 1.61 (95% confidence interval (CI) 0.61-4.27, p = 0.3) when considering BSI, and 1.76 (95% CI 0.73-4.21, p = 0.2) for HAP. The average adjusted ICU LOS was significantly longer for patients with BSI (geometric mean 9.0 days vs 6.3 days, p = 0.04) and HAP (geometric mean 13.9 days vs 6.0 days p<0.001). Conclusion: Nosocomial infection rates amongst patients with COVID-19 were low and their development was associated with a significantly longer ICU LOS.

10.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1690978

ABSTRACT

Due to the large number of patients with severe coronavirus disease 2019 (COVID-19), many were treated outside the traditional walls of the intensive care unit (ICU), and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or noninvasive mechanical ventilation, high-flow nasal cannula, inotropes or vasopressors. A logistic generalised additive model was used to compare clinical outcomes among patients admitted or not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median (interquartile range (IQR), 67 (55-78) years), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 (5-19) days and was longer in patients admitted to an ICU than in those who were cared for outside the ICU (12 (6-23) days versus 8 (4-15) days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% (5797 out of 18 831) versus 39.0% (7532 out of 19 295), p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR 0.70, 95% CI 0.65-0.75; p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside an ICU.

11.
ERJ open research ; 2021.
Article in English | EuropePMC | ID: covidwho-1610380

ABSTRACT

Due to the large number of patients with severe COVID-19, many were treated outside of the traditional walls of the ICU, and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside of the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the ISARIC WHO COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or non-invasive mechanical ventilation, high-flow nasal cannula, inotropes, and vasopressors. A logistic Generalised Additive Model was used to compare clinical outcomes among patients admitted and not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median [IQR], 67 years [55, 78]), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 days (5–19) and was longer in patients admitted to an ICU than in those that were cared for outside of ICU (12 [6–23] versus 8 [4–15] days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% [5797/18831] versus 39.0% [7532/19295], p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR:0.70, 95%CI: 0.65-0.75, p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside of an ICU.

13.
Crit Care Explor ; 3(11): e0567, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1515112

ABSTRACT

Factors associated with mortality in coronavirus disease 2019 patients on invasive mechanical ventilation are still not fully elucidated. OBJECTIVES: To identify patient-level parameters, readily available at the bedside, associated with the risk of in-hospital mortality within 28 days from commencement of invasive mechanical ventilation or coronavirus disease 2019. DESIGN SETTING AND PARTICIPANTS: Prospective observational cohort study by the global Coronavirus Disease 2019 Critical Care Consortium. Patients with laboratory-confirmed coronavirus disease 2019 requiring invasive mechanical ventilation from February 2, 2020, to May 15, 2021. MAIN OUTCOMES AND MEASURES: Patient characteristics and clinical data were assessed upon ICU admission, the commencement of invasive mechanical ventilation and for 28 days thereafter. We primarily aimed to identify time-independent and time-dependent risk factors for 28-day invasive mechanical ventilation mortality. RESULTS: One-thousand five-hundred eighty-seven patients were included in the survival analysis; 588 patients died in hospital within 28 days of commencing invasive mechanical ventilation (37%). Cox-regression analysis identified associations between the hazard of 28-day invasive mechanical ventilation mortality with age (hazard ratio, 1.26 per 10-yr increase in age; 95% CI, 1.16-1.37; p < 0.001), positive end-expiratory pressure upon commencement of invasive mechanical ventilation (hazard ratio, 0.81 per 5 cm H2O increase; 95% CI, 0.67-0.97; p = 0.02). Time-dependent parameters associated with 28-day invasive mechanical ventilation mortality were serum creatinine (hazard ratio, 1.28 per doubling; 95% CI, 1.15-1.41; p < 0.001), lactate (hazard ratio, 1.22 per doubling; 95% CI, 1.11-1.34; p < 0.001), Paco2 (hazard ratio, 1.63 per doubling; 95% CI, 1.19-2.25; p < 0.001), pH (hazard ratio, 0.89 per 0.1 increase; 95% CI, 0.8-14; p = 0.041), Pao2/Fio2 (hazard ratio, 0.58 per doubling; 95% CI, 0.52-0.66; p < 0.001), and mean arterial pressure (hazard ratio, 0.92 per 10 mm Hg increase; 95% CI, 0.88-0.97; p = 0.003). CONCLUSIONS AND RELEVANCE: This international study suggests that in patients with coronavirus disease 2019 on invasive mechanical ventilation, older age and clinically relevant variables monitored at baseline or sequentially during the course of invasive mechanical ventilation are associated with 28-day invasive mechanical ventilation mortality hazard. Further investigation is warranted to validate any causative roles these parameters might play in influencing clinical outcomes.

14.
Crit Care ; 25(1): 382, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506095

ABSTRACT

BACKGROUND: There are few reports of new functional impairment following critical illness from COVID-19. We aimed to describe the incidence of death or new disability, functional impairment and changes in health-related quality of life of patients after COVID-19 critical illness at 6 months. METHODS: In a nationally representative, multicenter, prospective cohort study of COVID-19 critical illness, we determined the prevalence of death or new disability at 6 months, the primary outcome. We measured mortality, new disability and return to work with changes in the World Health Organization Disability Assessment Schedule 2.0 12L (WHODAS) and health status with the EQ5D-5LTM. RESULTS: Of 274 eligible patients, 212 were enrolled from 30 hospitals. The median age was 61 (51-70) years, and 124 (58.5%) patients were male. At 6 months, 43/160 (26.9%) patients died and 42/108 (38.9%) responding survivors reported new disability. Compared to pre-illness, the WHODAS percentage score worsened (mean difference (MD), 10.40% [95% CI 7.06-13.77]; p < 0.001). Thirteen (11.4%) survivors had not returned to work due to poor health. There was a decrease in the EQ-5D-5LTM utility score (MD, - 0.19 [- 0.28 to - 0.10]; p < 0.001). At 6 months, 82 of 115 (71.3%) patients reported persistent symptoms. The independent predictors of death or new disability were higher severity of illness and increased frailty. CONCLUSIONS: At six months after COVID-19 critical illness, death and new disability was substantial. Over a third of survivors had new disability, which was widespread across all areas of functioning. Clinical trial registration NCT04401254 May 26, 2020.


Subject(s)
COVID-19/epidemiology , Critical Illness/epidemiology , Disabled Persons , Recovery of Function/physiology , Return to Work/trends , Aged , Aged, 80 and over , Australia/epidemiology , COVID-19/diagnosis , COVID-19/therapy , Cohort Studies , Critical Illness/therapy , Female , Follow-Up Studies , Health Status , Humans , Male , Middle Aged , Mortality/trends , Prospective Studies , Time Factors , Treatment Outcome
16.
Front Med (Lausanne) ; 8: 738086, 2021.
Article in English | MEDLINE | ID: covidwho-1441122

ABSTRACT

Background: In a disease that has only existed for 18 months, it is difficult to be fully informed of the long-term sequelae of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Evidence is growing that most organ systems can be affected by the virus, causing severe disabilities in survivors. The extent of the aftermath will declare itself over the next 5-10 years, but it is likely to be substantial with profound socio-economic impact on society. Methods: This is an international multi-center, prospective long-term follow-up study of patients who developed severe coronavirus disease-2019 (COVID-19) and were admitted to Intensive Care Units (ICUs). The study will be conducted at international tertiary hospitals. Patients will be monitored from time of ICU discharge up to 24 months. Information will be collected on demographics, co-existing illnesses before ICU admission, severity of illness during ICU admission and post-ICU quality of life as well as organ dysfunction and recovery. Statistical analysis will consist of patient trajectories over time for the key variables of quality of life and organ function. Using latent class analysis, we will determine if there are distinct patterns of patients in terms of recovery. Multivariable regression analyses will be used to examine associations between baseline characteristics and severity variables upon admission and discharge in the ICU, and how these impact outcomes at all follow-up time points up to 2 years. Ethics and Dissemination: The core study team and local principal investigators will ensure that the study adheres to all relevant national and local regulations, and that the necessary approvals are in place before a site may enroll patients. Clinical Trial Registration:anzctr.org.au: ACTRN12620000799954.

17.
Nutr Diet ; 77(4): 426-436, 2020 09.
Article in English | MEDLINE | ID: covidwho-1221530

ABSTRACT

Coronavirus disease 2019 (COVID-19) results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical features and subsequent medical treatment, combined with the impact of a global pandemic, require specific nutritional therapy in hospitalised adults. This document aims to provide Australian and New Zealand clinicians with guidance on managing critically and acutely unwell adult patients hospitalised with COVID-19. These recommendations were developed using expert consensus, incorporating the documented clinical signs and metabolic processes associated with COVID-19, the literature from other respiratory illnesses, in particular acute respiratory distress syndrome, and published guidelines for medical management of COVID-19 and general nutrition and intensive care. Patients hospitalised with COVID-19 are likely to have preexisting comorbidities, and the ensuing inflammatory response may result in increased metabolic demands, protein catabolism, and poor glycaemic control. Common medical interventions, including deep sedation, early mechanical ventilation, fluid restriction, and management in the prone position, may exacerbate gastrointestinal dysfunction and affect nutritional intake. Nutrition care should be tailored to pandemic capacity, with early gastric feeding commenced using an algorithm to provide nutrition for the first 5-7 days in lower-nutritional-risk patients and individualised care for high-nutritional-risk patients where capacity allows. Indirect calorimetry should be avoided owing to potential aerosol exposure and therefore infection risk to healthcare providers. Use of a volume-controlled, higher-protein enteral formula and gastric residual volume monitoring should be initiated. Careful monitoring, particularly after intensive care unit stay, is required to ensure appropriate nutrition delivery to prevent muscle deconditioning and aid recovery. The infectious nature of SARS-CoV-2 and the expected high volume of patient admissions will require contingency planning to optimise staffing resources including upskilling, ensure adequate nutrition supplies, facilitate remote consultations, and optimise food service management. These guidelines provide recommendations on how to manage the aforementioned aspects when providing nutrition support to patients during the SARS-CoV-2 pandemic.

18.
Med J Aust ; 214(1): 23-30, 2021 01.
Article in English | MEDLINE | ID: covidwho-1067923

ABSTRACT

OBJECTIVES: To describe the characteristics and outcomes of patients with COVID-19 admitted to intensive care units (ICUs) during the initial months of the pandemic in Australia. DESIGN, SETTING: Prospective, observational cohort study in 77 ICUs across Australia. PARTICIPANTS: Patients admitted to participating ICUs with laboratory-confirmed COVID-19 during 27 February - 30 June 2020. MAIN OUTCOME MEASURES: ICU mortality and resource use (ICU length of stay, peak bed occupancy). RESULTS: The median age of the 204 patients with COVID-19 admitted to intensive care was 63.5 years (IQR, 53-72 years); 140 were men (69%). The most frequent comorbid conditions were obesity (40% of patients), diabetes (28%), hypertension treated with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers (24%), and chronic cardiac disease (20%); 73 patients (36%) reported no comorbidity. The most frequent source of infection was overseas travel (114 patients, 56%). Median peak ICU bed occupancy was 14% (IQR, 9-16%). Invasive ventilation was provided for 119 patients (58%). Median length of ICU stay was greater for invasively ventilated patients than for non-ventilated patients (16 days; IQR, 9-28 days v 3 days; IQR, 2-5 days), as was ICU mortality (26 deaths, 22%; 95% CI, 15-31% v four deaths, 5%; 95% CI, 1-12%). Higher Acute Physiology and Chronic Health Evaluation II (APACHE-II) scores on ICU day 1 (adjusted hazard ratio [aHR], 1.15; 95% CI, 1.09-1.21) and chronic cardiac disease (aHR, 3.38; 95% CI, 1.46-7.83) were each associated with higher ICU mortality. CONCLUSION: Until the end of June 2020, mortality among patients with COVID-19 who required invasive ventilation in Australian ICUs was lower and their ICU stay longer than reported overseas. Our findings highlight the importance of ensuring adequate local ICU capacity, particularly as the pandemic has not yet ended.


Subject(s)
COVID-19/mortality , Hospital Mortality , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Pandemics , APACHE , Aged , Australia/epidemiology , COVID-19/therapy , Comorbidity , Female , Humans , Male , Middle Aged , Prospective Studies , Respiration, Artificial , Survival Analysis
20.
Ann Am Thorac Soc ; 18(8): 1380-1389, 2021 08.
Article in English | MEDLINE | ID: covidwho-999862

ABSTRACT

Rationale: Both 2009 pandemic influenza A (H1N1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted by respiratory secretions and in severe cases result in a viral pneumonitis, requiring intensive care unit (ICU) admission. However, no studies have compared the clinical characteristics and outcomes of such patients. Objectives: To report and compare the demographic characteristics, treatments, use of critical care resources, and outcomes of patients admitted to an Australian ICU with H1N1 influenza during the winter of 2009, and SARS-CoV-2 during the winter of 2020. Methods: This was a multicenter project, using national data from previous and ongoing epidemiological studies concerning severe acute respiratory infections in Australia. All ICUs admitting patients with H1N1 or coronavirus disease (COVID-19) were included and contributed data. We compared clinical characteristics and outcomes of patients with H1N1 admitted to ICU in the winter of 2009 versus patients with COVID-19 admitted to ICU in the winter of 2020. The primary outcome was in-hospital mortality. Potential years of life lost (PYLL) were calculated according to sex-adjusted life expectancy in Australia. Results: Across the two epochs, 861 patients were admitted to ICUs; 236 (27.4%) with COVID-19 and 625 (72.6%) with H1N1 influenza. The number of ICU admissions and bed-days occupied were higher with 2009 H1N1 influenza. Patients with COVID-19 were older, more often male and overweight, and had lower Acute Physiology and Chronic Health Evaluation II scores at ICU admission. The highest age-specific incidence of ICU admission was among infants (0-1 yr of age) for H1N1, and among the elderly (≥65 yr) for COVID-19. Unadjusted in-hospital mortality was similar (11.5% in COVID-19 vs. 16.1% in H1N1; odds ratio, 0.68 [95% confidence interval (95% CI), 0.42-1.06]; P = 0.10). The PYLL was greater with H1N1 influenza than with COVID-19 at 154.1 (95% CI, 148.7-159.4) versus 13.6 (95% CI, 12.2-15.1) PYLL per million inhabitants. Conclusions: In comparison with 2009 H1N1 influenza, COVID-19 admissions overwinter in Australia resulted in fewer ICU admissions, and lower bed-day occupancy. Crude in-hospital mortality was similar, but because of demographic differences in affected patients, deaths due to 2009 H1N1 influenza led to an 11-fold increase in the number of PYLL in critically ill patients.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Aged , Australia/epidemiology , Critical Care , Critical Illness , Humans , Infant , Influenza, Human/epidemiology , Influenza, Human/therapy , Intensive Care Units , Male , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL