Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ann N Y Acad Sci ; 1510(1): 79-99, 2022 04.
Article in English | MEDLINE | ID: covidwho-1822055

ABSTRACT

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Autophagy/physiology , Humans , Organelles , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Ubiquitin/metabolism
2.
Ann N Y Acad Sci ; 1511(1): 59-86, 2022 05.
Article in English | MEDLINE | ID: covidwho-1625044

ABSTRACT

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Global Health , Humans , Pandemics/prevention & control , Vaccines/therapeutic use
3.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Article in English | MEDLINE | ID: covidwho-1612914

ABSTRACT

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Congresses as Topic/trends , Embryonic Development/physiology , Research Report , Single-Cell Analysis/trends , Animals , Cell Lineage/physiology , Humans , Macrophages/physiology , Single-Cell Analysis/methods
4.
Ann N Y Acad Sci ; 1489(1): 17-29, 2021 04.
Article in English | MEDLINE | ID: covidwho-1280366

ABSTRACT

For years, experts have warned that a global pandemic was only a matter of time. Indeed, over the past two decades, several outbreaks and pandemics, from SARS to Ebola, have tested our ability to respond to a disease threat and provided the opportunity to refine our preparedness systems. However, when a novel coronavirus with human-to-human transmissibility emerged in China in 2019, many of these systems were found lacking. From international disputes over data and resources to individual disagreements over the effectiveness of facemasks, the COVID-19 pandemic has revealed several vulnerabilities. As of early November 2020, the WHO has confirmed over 46 million cases and 1.2 million deaths worldwide. While the world will likely be reeling from the effects of COVID-19 for months, and perhaps years, to come, one key question must be asked, How can we do better next time? This report summarizes views of experts from around the world on how lessons from past pandemics have shaped our current disease preparedness and response efforts, and how the COVID-19 pandemic may offer an opportunity to reinvent public health and healthcare systems to be more robust the next time a major challenge appears.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Delivery of Health Care , Pandemics , Public Health , Congresses as Topic , Humans
5.
Ann N Y Acad Sci ; 1484(1): 3-8, 2021 01.
Article in English | MEDLINE | ID: covidwho-1105353

ABSTRACT

Our food systems depend on complex interactions between farmers and food producers, local and federal governments, and consumers. Underlying these interactions are economic, environmental, and societal factors that can impact the types of food available, access to food, affordability, and food safety. The recent SARS-CoV-2 global pandemic has affected multiple aspects of our food systems, from federal governments' decisions to limit food exports, to the ability of government agencies to inspect food and facilities to the ability of consumers to dine at restaurants. It has also provided opportunities for societies to take a close look at the vulnerabilities in our food systems and reinvent them to be more robust and resilient. For the most part, how these changes ultimately affect the safety and accessibility of food around the world remains to be seen.


Subject(s)
COVID-19 , Food Safety , Food Services , Pandemics/economics , SARS-CoV-2 , COVID-19/economics , COVID-19/epidemiology , Congresses as Topic , Food Services/economics , Food Services/legislation & jurisprudence , Food Services/organization & administration , Food Services/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL