Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Sci Adv ; 9(3): eadd3867, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2239636

ABSTRACT

Successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires proteolytic cleavage of the viral spike protein. While the role of the host transmembrane protease serine 2 in SARS-CoV-2 infection is widely recognized, the involvement of other proteases capable of facilitating SARS-CoV-2 entry remains incompletely explored. Here, we show that multiple members from the membrane-type matrix metalloproteinase (MT-MMP) and a disintegrin and metalloproteinase families can mediate SARS-CoV-2 entry. Inhibition of MT-MMPs significantly reduces SARS-CoV-2 replication in vitro and in vivo. Mechanistically, we show that MT-MMPs can cleave SARS-CoV-2 spike and angiotensin-converting enzyme 2 and facilitate spike-mediated fusion. We further demonstrate that Omicron BA.1 has an increased efficiency on MT-MMP usage, while an altered efficiency on transmembrane serine protease usage for virus entry compared with that of ancestral SARS-CoV-2. These results reveal additional protease determinants for SARS-CoV-2 infection and enhance our understanding on the biology of coronavirus entry.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism , Proteolysis , Metalloproteases/metabolism , Virus Internalization
2.
Protein Cell ; 14(1): 37-50, 2023 01.
Article in English | MEDLINE | ID: covidwho-2222720

ABSTRACT

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Subject(s)
Antiviral Agents , Hepatitis B virus , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , SARS-CoV-2 , Animals , Mice , Antiviral Agents/pharmacology , COVID-19 , Interferon Type I/metabolism , SARS-CoV-2/drug effects , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors
3.
Nat Commun ; 13(1): 7907, 2022 12 23.
Article in English | MEDLINE | ID: covidwho-2185829

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for SARS-CoV-2. The full-length membrane form of ACE2 (memACE2) undergoes ectodomain shedding to generate a shed soluble form (solACE2) that mediates SARS-CoV-2 entry via receptor-mediated endocytosis. Currently, it is not known how the physiological regulation of ACE2 shedding contributes to the etiology of COVID-19 in vivo. The present study identifies Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) as a critical host protease for solACE2-mediated SARS-CoV-2 infection. SARS-CoV-2 infection leads to increased activation of MT1-MMP that is colocalized with ACE2 in human lung epithelium. Mechanistically, MT1-MMP directly cleaves memACE2 at M706-S to release solACE218-706 that binds to the SARS-CoV-2 spike proteins (S), thus facilitating cell entry of SARS-CoV-2. Human solACE218-706 enables SARS-CoV-2 infection in both non-permissive cells and naturally insusceptible C57BL/6 mice. Inhibition of MT1-MMP activities suppresses solACE2-directed entry of SARS-CoV-2 in human organoids and aged mice. Both solACE2 and circulating MT1-MMP are positively correlated in plasma of aged mice and humans. Our findings provide in vivo evidence demonstrating the contribution of ACE2 shedding to the etiology of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Host-Pathogen Interactions , Matrix Metalloproteinase 14 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Mice, Inbred C57BL , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
4.
Signal Transduct Target Ther ; 7(1): 392, 2022 12 19.
Article in English | MEDLINE | ID: covidwho-2185768

ABSTRACT

Horseshoe bats host numerous SARS-related coronaviruses without overt disease signs. Bat intestinal organoids, a unique model of bat intestinal epithelium, allow direct comparison with human intestinal organoids. We sought to unravel the cellular mechanism(s) underlying bat tolerance of coronaviruses by comparing the innate immunity in bat and human organoids. We optimized the culture medium, which enabled a consecutive passage of bat intestinal organoids for over one year. Basal expression levels of IFNs and IFN-stimulated genes were higher in bat organoids than in their human counterparts. Notably, bat organoids mounted a more rapid, robust and prolonged antiviral defense than human organoids upon Poly(I:C) stimulation. TLR3 and RLR might be the conserved pathways mediating antiviral response in bat and human intestinal organoids. The susceptibility of bat organoids to a bat coronavirus CoV-HKU4, but resistance to EV-71, an enterovirus of exclusive human origin, indicated that bat organoids adequately recapitulated the authentic susceptibility of bats to certain viruses. Importantly, TLR3/RLR inhibition in bat organoids significantly boosted viral growth in the early phase after SARS-CoV-2 or CoV-HKU4 infection. Collectively, the higher basal expression of antiviral genes, especially more rapid and robust induction of innate immune response, empowered bat cells to curtail virus propagation in the early phase of infection.


Subject(s)
COVID-19 , Chiroptera , Virus Diseases , Animals , Humans , Chiroptera/genetics , Antiviral Agents/pharmacology , Toll-Like Receptor 3/genetics , SARS-CoV-2 , Organoids , Immunosuppression Therapy
5.
Lancet Reg Health West Pac ; 32: 100660, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2165672

ABSTRACT

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods: We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings: During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation: Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding: Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.

6.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2050073

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
7.
Cell Rep Med ; 3(9): 100743, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2004613

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 was a dominant circulating SARS-CoV-2 variant worldwide. Recent reports hint that BA.2 is similarly potent regarding antibody evasion but may be more transmissible than BA.1. The pathogenicity of BA.2 remains unclear and is of critical public health significance. Here we investigated the virological features and pathogenicity of BA.2 with in vitro and in vivo models. We show that BA.2 is less dependent on transmembrane protease serine 2 (TMPRSS2) for virus entry in comparison with BA.1 in vitro. In K18-hACE2 mice, BA.2 replicates more efficiently than BA.1 in the nasal turbinates and replicates marginally less efficiently in the lungs, leading to decreased body weight loss and improved survival. Our study indicates that BA.2 is similarly attenuated in lungs compared with BA.1 but is potentially more transmissible because of its better replication at the nasal turbinates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , SARS-CoV-2/genetics , Serine , Virulence
8.
mBio ; 13(4): e0194422, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1986333

ABSTRACT

The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants. IMPORTANCE An in vitro model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium. Nasal organoids were derived from readily accessible nasal epithelial cells with perfect efficiency and stably expanded for more than 6 months. The long-term expandable nasal organoids were induced maturation into differentiated nasal organoids that morphologically and functionally simulate the nasal epithelium. The differentiated nasal organoids adequately recapitulated the higher infectivity and replicative fitness of SARS-CoV-2 emerging variants than the ancestral strain and revealed viral pathogenesis such as ciliary damage and tight junction disruption. Overall, we established a human nasal organoid culture system that enables a highly efficient reconstruction and stable expansion of the human nasal epithelium in culture plates, thus providing a facile and robust tool in the toolbox of microbiologists.


Subject(s)
COVID-19 , Nasal Mucosa , Organoids , SARS-CoV-2 , COVID-19/virology , Humans , Nasal Mucosa/virology , Organoids/virology , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Tissue Culture Techniques
9.
Emerg Microbes Infect ; 11(1): 2093-2101, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1978182

ABSTRACT

The replication and pathogenicity of SARS-CoV-2 Omicron BA.2 are comparable to that of BA.1 in experimental animal models. However, BA.2 has rapidly emerged to overtake BA.1 to become the predominant circulating SARS-CoV-2 variant worldwide. Here, we compared the replication fitness of BA.1 and BA.2 in cell culture and in the Syrian hamster model of COVID-19. Using a reverse genetics approach, we found that the BA.1-specific spike mutation G496S compromises its replication fitness, which may contribute to BA.1 being outcompeted by BA.2 in the real world. Additionally, the BA.1-unique G496S substitution confers differentiated sensitivity to therapeutic monoclonal antibodies, which partially recapitulates the immunoevasive phenotype of BA.1 and BA.2. In summary, our study identified G496S as an important determinant during the evolutionary trajectory of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Cricetinae , Humans , Mesocricetus , Mutation, Missense , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: covidwho-1972633

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
11.
Cell Discov ; 8(1): 57, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1967594

ABSTRACT

The airways and alveoli of the human respiratory tract are lined by two distinct types of epithelium, which are the primary targets of respiratory viruses. We previously established long-term expanding human lung epithelial organoids from lung tissues and developed a 'proximal' differentiation protocol to generate mucociliary airway organoids. However, a respiratory organoid system with bipotential of the airway and alveolar differentiation remains elusive. Here we defined a 'distal' differentiation approach to generate alveolar organoids from the same source for the derivation of airway organoids. The alveolar organoids consisting of type I and type II alveolar epithelial cells (AT1 and AT2, respectively) functionally simulate the alveolar epithelium. AT2 cells maintained in lung organoids serve as progenitor cells from which alveolar organoids derive. Moreover, alveolar organoids sustain a productive SARS-CoV-2 infection, albeit a lower replicative fitness was observed compared to that in airway organoids. We further optimized 2-dimensional (2D) airway organoids. Upon differentiation under a slightly acidic pH, the 2D airway organoids exhibit enhanced viral replication, representing an optimal in vitro correlate of respiratory epithelium for modeling the high infectivity of SARS-CoV-2. Notably, the higher infectivity and replicative fitness of the Omicron variant than an ancestral strain were accurately recapitulated in these optimized airway organoids. In conclusion, we have established a bipotential organoid culture system able to reproducibly expand the entire human respiratory epithelium in vitro for modeling respiratory diseases, including COVID-19.

12.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Article in English | MEDLINE | ID: covidwho-1954694

ABSTRACT

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Caco-2 Cells , Ceramides , Ethers , Glycerophospholipids , Humans , Lipid Metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
13.
Int J Biol Sci ; 18(12): 4714-4730, 2022.
Article in English | MEDLINE | ID: covidwho-1954691

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the biggest public health challenge the world has witnessed in the past decades. SARS-CoV-2 undergoes constant mutations and new variants of concerns (VOCs) with altered transmissibility, virulence, and/or susceptibility to vaccines and therapeutics continue to emerge. Detailed analysis of host factors involved in virus replication may help to identify novel treatment targets. In this study, we dissected the metabolome derived from COVID-19 patients to identify key host factors that are required for efficient SARS-CoV-2 replication. Through a series of metabolomic analyses, in vitro, and in vivo investigations, we identified ATP citrate lyase (ACLY) as a novel host factor required for efficient replication of SARS-CoV-2 wild-type and variants, including Omicron. ACLY should be further explored as a novel intervention target for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , ATP Citrate (pro-S)-Lyase , Humans , Pandemics , Virus Replication/genetics
15.
Science ; 377(6604): 428-433, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1901908

ABSTRACT

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/transmission , Disease Models, Animal , Mesocricetus , SARS-CoV-2/pathogenicity , Virulence
16.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: covidwho-1892019

ABSTRACT

SARS-CoV-2 has been confirmed in over 450 million confirmed cases since 2019. Although several vaccines have been certified by the WHO and people are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralization by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 in the K18-hACE2 mouse model. Our data demonstrate that i.v. BCG (BCG-i.v.) vaccination induces robust trained innate immune responses and provides protection against WT SARS-CoV-2, as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between BCG-i.v. vaccination and protection against SARS-CoV-2 challenge.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , BCG Vaccine , COVID-19/prevention & control , Humans , Melphalan , Mice , gamma-Globulins
17.
Clin Infect Dis ; 75(1): e974-e990, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1886373

ABSTRACT

BACKGROUND: The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pathogenesis of testicular damage is uncertain. METHODS: We investigated the virological, pathological, and immunological changes in testes of hamsters challenged by wild-type SARS-CoV-2 and its variants with intranasal or direct testicular inoculation using influenza virus A(H1N1)pdm09 as control. RESULTS: Besides self-limiting respiratory tract infection, intranasal SARS-CoV-2 challenge caused acute decrease in sperm count, serum testosterone and inhibin B at 4-7 days after infection; and chronic reduction in testicular size and weight, and serum sex hormone at 42-120 days after infection. Acute histopathological damage with worsening degree of testicular inflammation, hemorrhage, necrosis, degeneration of seminiferous tubules, and disruption of orderly spermatogenesis were seen with increasing virus inoculum. Degeneration and death of Sertoli and Leydig cells were found. Although viral loads and SARS-CoV-2 nucleocapsid protein expression were markedly lower in testicular than in lung tissues, direct intratesticular injection of SARS-CoV-2 demonstrated nucleocapsid expressing interstitial cells and epididymal epithelial cells, While intranasal or intratesticular challenge by A(H1N1)pdm09 control showed no testicular infection or damage. From 7 to 120 days after infection, degeneration and apoptosis of seminiferous tubules, immune complex deposition, and depletion of spermatogenic cell and spermatozoa persisted. Intranasal challenge with Omicron and Delta variants could also induce similar testicular changes. This testicular damage can be prevented by vaccination. CONCLUSIONS: SARS-CoV-2 can cause acute testicular damage with subsequent chronic asymmetric testicular atrophy and associated hormonal changes despite a self-limiting pneumonia in hamsters. Awareness of possible hypogonadism and subfertility is important in managing convalescent coronavirus disease 2019 in men.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Animals , Cricetinae , Humans , Male , SARS-CoV-2 , Semen , Testis
18.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852993

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Outbreaks , Female , Hong Kong/epidemiology , Humans , Mammals , RNA, Viral/genetics , SARS-CoV-2/genetics
19.
Nat Commun ; 13(1): 2539, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1830055

ABSTRACT

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterize the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. Moreover, we show that the bone loss is associated with SARS-CoV-2-induced cytokine dysregulation, as the circulating pro-inflammatory cytokines not only upregulate osteoclastic differentiation in bone tissues, but also trigger an amplified pro-inflammatory cascade in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.


Subject(s)
COVID-19 , Animals , COVID-19/complications , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2
20.
Chemical science ; 13(11):3216-3226, 2022.
Article in English | EuropePMC | ID: covidwho-1782305

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases. A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.

SELECTION OF CITATIONS
SEARCH DETAIL