Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1488619


The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to global public health and the economy. The enzymatic product of cholesterol 25-hydroxylase (CH25H), 25-Hydroxycholesterol (25-HC), was reported to have potent anti-SARS-CoV-2 activity. Here, we found that the combination of 25-HC with EK1 peptide, a pan-coronavirus (CoV) fusion inhibitor, showed a synergistic antiviral activity. We then used the method of 25-HC modification to design and synthesize a series of 25-HC-modified peptides and found that a 25-HC-modified EK1 peptide (EK1P4HC) was highly effective against infections caused by SARS-CoV-2, its variants of concern (VOCs), and other human CoVs, such as HCoV-OC43 and HCoV-229E. EK1P4HC could protect newborn mice from lethal HCoV-OC43 infection, suggesting that conjugation of 25-HC with a peptide-based viral inhibitor was a feasible and universal strategy to improve its antiviral activity.

Antiviral Agents/pharmacology , Hydroxycholesterols/chemistry , Lipopeptides/chemistry , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Body Weight/drug effects , COVID-19/drug therapy , COVID-19/virology , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/pathogenicity , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/virology , Coronavirus OC43, Human/drug effects , Coronavirus OC43, Human/pathogenicity , Disease Models, Animal , Drug Synergism , Humans , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Mice , Mice, Inbred BALB C , Polyethylene Glycols/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Survival Rate , Virus Internalization/drug effects
Acta Pharm Sin B ; 12(4): 1652-1661, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1336241


The development of broad-spectrum antivirals against human coronaviruses (HCoVs) is critical to combat the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, as well as future outbreaks of emerging CoVs. We have previously identified a polyethylene glycol-conjugated (PEGylated) lipopeptide, EK1C4, with potent pan-CoV fusion inhibitory activity. However, PEG linkers in peptide or protein drugs may reduce stability or induce anti-PEG antibodies in vivo. Therefore, we herein report the design and synthesis of a series of dePEGylated lipopeptide-based pan-CoV fusion inhibitors featuring the replacement of the PEG linker with amino acids in the heptad repeat 2 C-terminal fragment (HR2-CF) of HCoV-OC43. Among these lipopeptides, EKL1C showed the most potent inhibitory activity against infection by SARS-CoV-2 and its spike (S) mutants, as well as other HCoVs and some bat SARS-related coronaviruses (SARSr-CoVs) tested. The dePEGylated lipopeptide EKL1C exhibited significantly stronger resistance to proteolytic enzymes, better metabolic stability in mouse serum, higher thermostability than the PEGylated lipopeptide EK1C4, suggesting that EKL1C could be further developed as a candidate prophylactic and therapeutic for COVID-19 and other coronavirus diseases.

Cell Biosci ; 11(1): 128, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1301888


BACKGROUND: Our previous studies have shown that combining the antiviral lectin GRFT and the pan-CoV fusion inhibitory peptide EK1 results in highly potent inhibitory activity against SARS-CoV-2 infection. In this study, we aimed to design and construct a bivalent protein consisting of GRFT and EK1 components and evaluate its inhibitory activity and mechanism of action against infection by SARS-CoV-2 and its mutants, as well as other human coronaviruses (HCoVs). METHODS: The bivalent proteins were expressed in E. coli and purified with Ni-NTA column. HIV backbone-based pseudovirus (PsV) infection and HCoV S-mediated cell-cell fusion assays were performed to test their inhibitory activity. ELISA and Native-PAGE were conducted to illustrate the mechanism of action of these bivalent proteins. Five-day-old newborn mice were intranasally administrated with a selected bivalent protein before or after HCoV-OC43 challenge, and its protective effect was monitored for 14 days. RESULTS: Among the three bivalent proteins purified, GL25E exhibited the most potent inhibitory activity against infection of SARS-CoV-2 PsVs expressing wild-type and mutated S protein. GL25E was significantly more effective than GRFT and EK1 alone in inhibiting HCoV S-mediated cell-cell fusion, as well as infection by SARS-CoV-2 and other HCoVs, including SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63 and HCoV-OC43. GL25E could inhibit authentic SASR-CoV-2, HCoV-OC43 and HCoV-229E infection in vitro and prevent newborn mice from authentic HCoV-OC43 infection in vivo. GL25E could bind to glycans in the S1 subunit and HR1 in the S2 subunit in S protein, showing a mechanism of action similar to that of GRFT and EK1 alone. CONCLUSIONS: Since GL25E showed highly potent and broad-spectrum inhibitory activity against infection of SARS-CoV-2 and its mutants, as well as other HCoVs, it is a promising candidate for further development as a broad-spectrum anti-HCoV therapeutic and prophylactic to treat and prevent COVID-19 and other emerging HCoV diseases.