Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Epidemics ; 37: 100517, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482585

ABSTRACT

INTRODUCTION: As of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. METHODS: A modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. RESULTS: The national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020.


Subject(s)
COVID-19 , Humans , Malaysia/epidemiology , SARS-CoV-2 , Vaccination
2.
Med J Aust ; 215(9): 427-432, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1389702

ABSTRACT

OBJECTIVES: To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN: Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( R eff v ¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES: Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS: Assuming R eff v ¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At R eff v ¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At R eff v ¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION: Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the R eff v ¯ declines and vaccination coverage increases. Assuming the most plausible R eff v ¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Herd , Mass Vaccination/organization & administration , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Factors , Australia/epidemiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Computer Simulation , Humans , Immunogenicity, Vaccine , Mass Vaccination/statistics & numerical data , Middle Aged , Models, Immunological , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination Coverage/organization & administration , Vaccination Coverage/statistics & numerical data , Young Adult
3.
Paediatr Respir Rev ; 39: 32-39, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1322314

ABSTRACT

Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including (1) calculating the herd immunity threshold and evaluating its limitations; (2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; (3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and (4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/organization & administration , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Humans , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2
4.
Lancet Reg Health West Pac ; 14: 100211, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309328

ABSTRACT

BACKGROUND: COVID-19 initially caused less severe outbreaks in many low- and middle-income countries (LMIC) compared with many high-income countries, possibly because of differing demographics, socioeconomics, surveillance, and policy responses. Here, we investigate the role of multiple factors on COVID-19 dynamics in the Philippines, a LMIC that has had a relatively severe COVID-19 outbreak. METHODS: We applied an age-structured compartmental model that incorporated time-varying mobility, testing, and personal protective behaviors (through a "Minimum Health Standards" policy, MHS) to represent the first wave of the Philippines COVID-19 epidemic nationally and for three highly affected regions (Calabarzon, Central Visayas, and the National Capital Region). We estimated effects of control measures, key epidemiological parameters, and interventions. FINDINGS: Population age structure, contact rates, mobility, testing, and MHS were sufficient to explain the Philippines epidemic based on the good fit between modelled and reported cases, hospitalisations, and deaths. The model indicated that MHS reduced the probability of transmission per contact by 13-27%. The February 2021 case detection rate was estimated at ~8%, population recovered at ~9%, and scenario projections indicated high sensitivity to MHS adherence. INTERPRETATION: COVID-19 dynamics in the Philippines are driven by age, contact structure, mobility, and MHS adherence. Continued compliance with low-cost MHS should help the Philippines control the epidemic until vaccines are widely distributed, but disease resurgence may be occurring due to a combination of low population immunity and detection rates and new variants of concern.

5.
Paediatr Respir Rev ; 35: 64-69, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-608740

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that was declared a pandemic by the World Health Organization on 11th March, 2020. Response to this ongoing pandemic requires extensive collaboration across the scientific community in an attempt to contain its impact and limit further transmission. Mathematical modelling has been at the forefront of these response efforts by: (1) providing initial estimates of the SARS-CoV-2 reproduction rate, R0 (of approximately 2-3); (2) updating these estimates following the implementation of various interventions (with significantly reduced, often sub-critical, transmission rates); (3) assessing the potential for global spread before significant case numbers had been reported internationally; and (4) quantifying the expected disease severity and burden of COVID-19, indicating that the likely true infection rate is often orders of magnitude greater than estimates based on confirmed case counts alone. In this review, we highlight the critical role played by mathematical modelling to understand COVID-19 thus far, the challenges posed by data availability and uncertainty, and the continuing utility of modelling-based approaches to guide decision making and inform the public health response. †Unless otherwise stated, all bracketed error margins correspond to the 95% credible interval (CrI) for reported estimates.


Subject(s)
Coronavirus Infections/epidemiology , Decision Making , Models, Theoretical , Pneumonia, Viral/epidemiology , Public Health , Betacoronavirus , COVID-19 , Coronavirus Infections/physiopathology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Data Collection , Humans , Pandemics/prevention & control , Pneumonia, Viral/physiopathology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Severity of Illness Index
6.
Paediatr Respir Rev ; 35: 57-60, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-603916

ABSTRACT

Models have played an important role in policy development to address the COVID-19 outbreak from its emergence in China to the current global pandemic. Early projections of international spread influenced travel restrictions and border closures. Model projections based on the virus's infectiousness demonstrated its pandemic potential, which guided the global response to and prepared countries for increases in hospitalisations and deaths. Tracking the impact of distancing and movement policies and behaviour changes has been critical in evaluating these decisions. Models have provided insights into the epidemiological differences between higher and lower income countries, as well as vulnerable population groups within countries to help design fit-for-purpose policies. Economic evaluation and policies have combined epidemic models and traditional economic models to address the economic consequences of COVID-19, which have informed policy calls for easing restrictions. Social contact and mobility models have allowed evaluation of the pathways to safely relax mobility restrictions and distancing measures. Finally, models can consider future end-game scenarios, including how suppression can be achieved and the impact of different vaccination strategies.


Subject(s)
Coronavirus Infections/epidemiology , Health Policy , Models, Theoretical , Pneumonia, Viral/epidemiology , Policy Making , Betacoronavirus , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Developing Countries , Epidemiologic Methods , Humans , Models, Economic , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Public Health , Public Policy , SARS-CoV-2 , Travel , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL