Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect Dis ; 226(9): 1562-1567, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1886443

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern negatively impact the effectiveness of vaccines. In this study, we challenge hamsters with the delta variant after 2- or 3-dose inoculations with SARS-CoV-2 vaccines constructed from stabilized prefusion spike proteins (S-2P) of Wuhan (W) and beta (B) variants. Compared to 3 doses of W S-2P, 2 doses of W S-2P followed by a third dose of B S-2P induced the highest neutralizing antibody titer against live SARS-CoV-2 virus and enhanced neutralization of omicron variant pseudovirus. Reduced lung live virus titer and pathology suggested that all vaccination regimens protect hamsters from SARS-CoV-2 delta variant challenge.


Subject(s)
COVID-19 Vaccines , COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Cricetinae , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
2.
Sci Rep ; 11(1): 8761, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199318

ABSTRACT

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 µg or 5 µg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , COVID-19/prevention & control , Oligodeoxyribonucleotides/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Aluminum Hydroxide/immunology , Animals , Antibodies, Neutralizing/metabolism , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cell Line , Cricetinae , Female , Humans , Immunization , Injections, Intramuscular , Oligodeoxyribonucleotides/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Viral Load/drug effects
3.
Front Immunol ; 11: 598402, 2020.
Article in English | MEDLINE | ID: covidwho-1045523

ABSTRACT

COVID-19 disease caused by the SARS-CoV-2 virus is characterized by dysregulation of effector T cells and accumulation of exhausted T cells. T cell responses to viruses can be corrected by adoptive cellular therapy using donor-derived virus-specific T cells. One approach is the establishment of banks of HLA-typed virus-specific T cells for rapid deployment to patients. Here we show that SARS-CoV-2-exposed blood donations contain CD4 and CD8 memory T cells which recognize SARS-CoV-2 spike, nucleocapsid and membrane antigens. Peptides of these antigens can be used to isolate virus-specific T cells in a GMP-compliant process. The isolated T cells can be rapidly expanded using GMP-compliant reagents for use as an allogeneic therapy. Memory and effector phenotypes are present in the selected virus-specific T cells, but our method rapidly expands the desirable central memory phenotype. A manufacturing yield ranging from 1010 to 1011 T cells can be obtained within 21 days culture. Thus, multiple therapeutic doses of virus-specific T cells can be rapidly generated from convalescent donors for potential treatment of COVID-19 patients.


Subject(s)
Allogeneic Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Blood Donors , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunologic Memory/immunology , Immunotherapy, Adoptive , Lymphocyte Activation/immunology , Membrane Proteins/immunology , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
Sci Rep ; 10(1): 20085, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-933722

ABSTRACT

The COVID-19 pandemic is a worldwide health emergency which calls for an unprecedented race for vaccines and treatment. In developing a COVID-19 vaccine, we applied technology previously used for MERS-CoV to produce a prefusion-stabilized SARS-CoV-2 spike protein, S-2P. To enhance immunogenicity and mitigate the potential vaccine-induced immunopathology, CpG 1018, a Th1-biasing synthetic toll-like receptor 9 (TLR9) agonist was selected as an adjuvant candidate. S-2P in combination with CpG 1018 and aluminum hydroxide (alum) was found to be the most potent immunogen and induced high titer of neutralizing antibodies in sera of immunized mice against pseudotyped lentivirus reporter or live wild-type SARS-CoV-2. In addition, the antibodies elicited were able to cross-neutralize pseudovirus containing the spike protein of the D614G variant, indicating the potential for broad spectrum protection. A marked Th1 dominant response was noted from cytokines secreted by splenocytes of mice immunized with CpG 1018 and alum. No vaccine-related serious adverse effects were found in the dose-ranging study in rats administered single- or two-dose regimens of S-2P combined with CpG 1018 alone or CpG 1018 with alum. These data support continued development of CHO-derived S-2P formulated with CpG 1018 and alum as a candidate vaccine to prevent COVID-19 disease.


Subject(s)
COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Immunologic/therapeutic use , Aluminum Hydroxide/therapeutic use , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , CHO Cells , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Cricetinae , Cricetulus , Cytokines/blood , Cytokines/metabolism , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligodeoxyribonucleotides/therapeutic use , Rats , Rats, Sprague-Dawley , Spleen/immunology , Th1 Cells/immunology
5.
J Transl Med ; 18(1): 359, 2020 09 21.
Article in English | MEDLINE | ID: covidwho-781480

ABSTRACT

More than seven months into the coronavirus disease -19 (COVID-19) pandemic, infection from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 21.2 million cases and resulted in over 760,000 deaths worldwide so far. As a result, COVID-19 has changed all our lives as we battle to curtail the spread of the infection in the absence of specific therapies against coronaviruses and in anticipation of a proven safe and efficacious vaccine. Common with previous outbreaks of coronavirus infections, SARS and Middle East respiratory syndrome, COVID-19 can lead to acute respiratory distress syndrome (ARDS) that arises due to an imbalanced immune response. While several repurposed antiviral and host-response drugs are under examination as potential treatments, other novel therapeutics are also being explored to alleviate the effects on critically ill patients. The use of mesenchymal stromal cells (MSCs) for COVID-19 has become an attractive avenue down which almost 70 different clinical trial teams have ventured. Successfully trialled for the treatment of other conditions such as multiple sclerosis, osteoarthritis and graft versus host disease, MSCs possess both regenerative and immunomodulatory properties, the latter of which can be harnessed to reduce the severity and longevity of ARDS in patients under intensive care due to SARS-CoV-2 infection.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation , Pneumonia, Viral/therapy , Animals , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL