Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Am Med Inform Assoc ; 29(4): 677-685, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1545999

ABSTRACT

OBJECTIVE: Obtaining electronic patient data, especially from electronic health record (EHR) systems, for clinical and translational research is difficult. Multiple research informatics systems exist but navigating the numerous applications can be challenging for scientists. This article describes Architecture for Research Computing in Health (ARCH), our institution's approach for matching investigators with tools and services for obtaining electronic patient data. MATERIALS AND METHODS: Supporting the spectrum of studies from populations to individuals, ARCH delivers a breadth of scientific functions-including but not limited to cohort discovery, electronic data capture, and multi-institutional data sharing-that manifest in specific systems-such as i2b2, REDCap, and PCORnet. Through a consultative process, ARCH staff align investigators with tools with respect to study design, data sources, and cost. Although most ARCH services are available free of charge, advanced engagements require fee for service. RESULTS: Since 2016 at Weill Cornell Medicine, ARCH has supported over 1200 unique investigators through more than 4177 consultations. Notably, ARCH infrastructure enabled critical coronavirus disease 2019 response activities for research and patient care. DISCUSSION: ARCH has provided a technical, regulatory, financial, and educational framework to support the biomedical research enterprise with electronic patient data. Collaboration among informaticians, biostatisticians, and clinicians has been critical to rapid generation and analysis of EHR data. CONCLUSION: A suite of tools and services, ARCH helps match investigators with informatics systems to reduce time to science. ARCH has facilitated research at Weill Cornell Medicine and may provide a model for informatics and research leaders to support scientists elsewhere.


Subject(s)
Biomedical Research , COVID-19 , Electronic Health Records , Electronics , Humans , Information Storage and Retrieval , Research Personnel
2.
Int J Med Inform ; 157: 104622, 2022 01.
Article in English | MEDLINE | ID: covidwho-1507080

ABSTRACT

INTRODUCTION: Data extraction from electronic health record (EHR) systems occurs through manual abstraction, automated extraction, or a combination of both. While each method has its strengths and weaknesses, both are necessary for retrospective observational research as well as sudden clinical events, like the COVID-19 pandemic. Assessing the strengths, weaknesses, and potentials of these methods is important to continue to understand optimal approaches to extracting clinical data. We set out to assess automated and manual techniques for collecting medication use data in patients with COVID-19 to inform future observational studies that extract data from the electronic health record (EHR). MATERIALS AND METHODS: For 4,123 COVID-positive patients hospitalized and/or seen in the emergency department at an academic medical center between 03/03/2020 and 05/15/2020, we compared medication use data of 25 medications or drug classes collected through manual abstraction and automated extraction from the EHR. Quantitatively, we assessed concordance using Cohen's kappa to measure interrater reliability, and qualitatively, we audited observed discrepancies to determine causes of inconsistencies. RESULTS: For the 16 inpatient medications, 11 (69%) demonstrated moderate or better agreement; 7 of those demonstrated strong or almost perfect agreement. For 9 outpatient medications, 3 (33%) demonstrated moderate agreement, but none achieved strong or almost perfect agreement. We audited 12% of all discrepancies (716/5,790) and, in those audited, observed three principal categories of error: human error in manual abstraction (26%), errors in the extract-transform-load (ETL) or mapping of the automated extraction (41%), and abstraction-query mismatch (33%). CONCLUSION: Our findings suggest many inpatient medications can be collected reliably through automated extraction, especially when abstraction instructions are designed with data architecture in mind. We discuss quality issues, concerns, and improvements for institutions to consider when crafting an approach. During crises, institutions must decide how to allocate limited resources. We show that automated extraction of medications is feasible and make recommendations on how to improve future iterations.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Data Collection , Electronic Health Records , Humans , Pandemics , Reproducibility of Results , Retrospective Studies , SARS-CoV-2
3.
J Am Med Inform Assoc ; 29(4): 609-618, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1443051

ABSTRACT

OBJECTIVE: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations. MATERIALS AND METHODS: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements. RESULTS: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback. DISCUSSION: We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate. CONCLUSION: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.


Subject(s)
COVID-19 , Cohort Studies , Data Accuracy , Health Insurance Portability and Accountability Act , Humans , United States
4.
Sci Rep ; 11(1): 15872, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1345580

ABSTRACT

COVID-19-associated respiratory failure offers the unprecedented opportunity to evaluate the differential host response to a uniform pathogenic insult. Understanding whether there are distinct subphenotypes of severe COVID-19 may offer insight into its pathophysiology. Sequential Organ Failure Assessment (SOFA) score is an objective and comprehensive measurement that measures dysfunction severity of six organ systems, i.e., cardiovascular, central nervous system, coagulation, liver, renal, and respiration. Our aim was to identify and characterize distinct subphenotypes of COVID-19 critical illness defined by the post-intubation trajectory of SOFA score. Intubated COVID-19 patients at two hospitals in New York city were leveraged as development and validation cohorts. Patients were grouped into mild, intermediate, and severe strata by their baseline post-intubation SOFA. Hierarchical agglomerative clustering was performed within each stratum to detect subphenotypes based on similarities amongst SOFA score trajectories evaluated by Dynamic Time Warping. Distinct worsening and recovering subphenotypes were identified within each stratum, which had distinct 7-day post-intubation SOFA progression trends. Patients in the worsening suphenotypes had a higher mortality than those in the recovering subphenotypes within each stratum (mild stratum, 29.7% vs. 10.3%, p = 0.033; intermediate stratum, 29.3% vs. 8.0%, p = 0.002; severe stratum, 53.7% vs. 22.2%, p < 0.001). Pathophysiologic biomarkers associated with progression were distinct at each stratum, including findings suggestive of inflammation in low baseline severity of illness versus hemophagocytic lymphohistiocytosis in higher baseline severity of illness. The findings suggest that there are clear worsening and recovering subphenotypes of COVID-19 respiratory failure after intubation, which are more predictive of outcomes than baseline severity of illness. Distinct progression biomarkers at differential baseline severity of illness suggests a heterogeneous pathobiology in the progression of COVID-19 respiratory failure.


Subject(s)
COVID-19/diagnosis , Multiple Organ Failure/diagnosis , Aged , COVID-19/complications , COVID-19/physiopathology , Critical Illness , Female , Humans , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Organ Dysfunction Scores , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
J Biomed Inform ; 118: 103789, 2021 06.
Article in English | MEDLINE | ID: covidwho-1188720

ABSTRACT

Patients treated in an intensive care unit (ICU) are critically ill and require life-sustaining organ failure support. Existing critical care data resources are limited to a select number of institutions, contain only ICU data, and do not enable the study of local changes in care patterns. To address these limitations, we developed the Critical carE Database for Advanced Research (CEDAR), a method for automating extraction and transformation of data from an electronic health record (EHR) system. Compared to an existing gold standard of manually collected data at our institution, CEDAR was statistically similar in most measures, including patient demographics and sepsis-related organ failure assessment (SOFA) scores. Additionally, CEDAR automated data extraction obviated the need for manual collection of 550 variables. Critically, during the spring 2020 COVID-19 surge in New York City, a modified version of CEDAR supported pandemic response efforts, including clinical operations and research. Other academic medical centers may find value in using the CEDAR method to automate data extraction from EHR systems to support ICU activities.


Subject(s)
COVID-19 , Databases, Factual , Electronic Health Records , Intensive Care Units , Aged , Aged, 80 and over , Critical Care , Critical Illness , Female , Humans , Male , Middle Aged , New York City
8.
JAMA Neurol ; 2020 Jul 02.
Article in English | MEDLINE | ID: covidwho-627768

ABSTRACT

IMPORTANCE: It is uncertain whether coronavirus disease 2019 (COVID-19) is associated with a higher risk of ischemic stroke than would be expected from a viral respiratory infection. OBJECTIVE: To compare the rate of ischemic stroke between patients with COVID-19 and patients with influenza, a respiratory viral illness previously associated with stroke. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study was conducted at 2 academic hospitals in New York City, New York, and included adult patients with emergency department visits or hospitalizations with COVID-19 from March 4, 2020, through May 2, 2020. The comparison cohort included adults with emergency department visits or hospitalizations with influenza A/B from January 1, 2016, through May 31, 2018 (spanning moderate and severe influenza seasons). EXPOSURES: COVID-19 infection confirmed by evidence of severe acute respiratory syndrome coronavirus 2 in the nasopharynx by polymerase chain reaction and laboratory-confirmed influenza A/B. MAIN OUTCOMES AND MEASURES: A panel of neurologists adjudicated the primary outcome of acute ischemic stroke and its clinical characteristics, mechanisms, and outcomes. We used logistic regression to compare the proportion of patients with COVID-19 with ischemic stroke vs the proportion among patients with influenza. RESULTS: Among 1916 patients with emergency department visits or hospitalizations with COVID-19, 31 (1.6%; 95% CI, 1.1%-2.3%) had an acute ischemic stroke. The median age of patients with stroke was 69 years (interquartile range, 66-78 years); 18 (58%) were men. Stroke was the reason for hospital presentation in 8 cases (26%). In comparison, 3 of 1486 patients with influenza (0.2%; 95% CI, 0.0%-0.6%) had an acute ischemic stroke. After adjustment for age, sex, and race, the likelihood of stroke was higher with COVID-19 infection than with influenza infection (odds ratio, 7.6; 95% CI, 2.3-25.2). The association persisted across sensitivity analyses adjusting for vascular risk factors, viral symptomatology, and intensive care unit admission. CONCLUSIONS AND RELEVANCE: In this retrospective cohort study from 2 New York City academic hospitals, approximately 1.6% of adults with COVID-19 who visited the emergency department or were hospitalized experienced ischemic stroke, a higher rate of stroke compared with a cohort of patients with influenza. Additional studies are needed to confirm these findings and to investigate possible thrombotic mechanisms associated with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL