Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Adv Sci (Weinh) ; 8(23): e2102593, 2021 12.
Article in English | MEDLINE | ID: covidwho-1559092


Fast and accurate identification of microbial pathogens is critical for the proper treatment of infections. Traditional culture-based diagnosis in clinics is increasingly supplemented by metagenomic next-generation-sequencing (mNGS). Here, RNA/cDNA-targeted sequencing (meta-transcriptomics using NGS (mtNGS)) is established to reduce the host nucleotide percentage in clinic samples and by combining with Oxford Nanopore Technology (ONT) platforms (meta-transcriptomics using third-generation sequencing, mtTGS) to improve the sequencing time. It shows that mtNGS improves the ratio of microbial reads, facilitates bacterial identification using multiple-strategies, and discovers fungi, viruses, and antibiotic resistance genes, and displaying agreement with clinical findings. Furthermore, longer reads in mtTGS lead to additional improvement in pathogen identification and also accelerate the clinical diagnosis. Additionally, primary tests utilizing direct-RNA sequencing and targeted sequencing of ONT show that ONT displays important potential but must be further developed. This study presents the potential of RNA-targeted pathogen identification in clinical samples, especially when combined with the newest developments in ONT.

Bronchoalveolar Lavage Fluid/microbiology , High-Throughput Nucleotide Sequencing/methods , Infections/genetics , Metagenomics/methods , RNA/genetics , Sequence Analysis, RNA/methods , Aged , Bronchoalveolar Lavage/methods , Female , Humans , Male , Metagenome/genetics , Middle Aged
Nat Metab ; 3(7): 909-922, 2021 07.
Article in English | MEDLINE | ID: covidwho-1279905


Exosomes represent a subtype of extracellular vesicle that is released through retrograde transport and fusion of multivesicular bodies with the plasma membrane1. Although no perfect methodologies currently exist for the high-throughput, unbiased isolation of pure plasma exosomes2,3, investigation of exosome-enriched plasma fractions of extracellular vesicles can confer a glimpse into the endocytic pathway on a systems level. Here we conduct high-coverage lipidomics with an emphasis on sterols and oxysterols, and proteomic analyses of exosome-enriched extracellular vesicles (EVs hereafter) from patients at different temporal stages of COVID-19, including the presymptomatic, hyperinflammatory, resolution and convalescent phases. Our study highlights dysregulated raft lipid metabolism that underlies changes in EV lipid membrane anisotropy that alter the exosomal localization of presenilin-1 (PS-1) in the hyperinflammatory phase. We also show in vitro that EVs from different temporal phases trigger distinct metabolic and transcriptional responses in recipient cells, including in alveolar epithelial cells, which denote the primary site of infection, and liver hepatocytes, which represent a distal secondary site. In comparison to the hyperinflammatory phase, EVs from the resolution phase induce opposing effects on eukaryotic translation and Notch signalling. Our results provide insights into cellular lipid metabolism and inter-tissue crosstalk at different stages of COVID-19 and are a resource to increase our understanding of metabolic dysregulation in COVID-19.

COVID-19/metabolism , COVID-19/virology , Extracellular Vesicles/metabolism , Lipidomics , Metabolomics , SARS-CoV-2 , Biological Transport , COVID-19/epidemiology , Cell Fractionation , Cell Membrane/metabolism , Chemical Fractionation , Cluster Analysis , Computational Biology/methods , Exosomes/metabolism , Host-Pathogen Interactions , Humans , Lipidomics/methods , Metabolome , Metabolomics/methods , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology
Gut Microbes ; 13(1): 1-21, 2021.
Article in English | MEDLINE | ID: covidwho-1121345


SARS-CoV-2 is the cause of the current global pandemic of COVID-19; this virus infects multiple organs, such as the lungs and gastrointestinal tract. The microbiome in these organs, including the bacteriome and virome, responds to infection and might also influence disease progression and treatment outcome. In a cohort of 13 COVID-19 patients in Beijing, China, we observed that the gut virome and bacteriome in the COVID-19 patients were notably different from those of five healthy controls. We identified a bacterial dysbiosis signature by observing reduced diversity and viral shifts in patients, and among the patients, the bacterial/viral compositions were different between patients of different severities, although these differences are not entirely distinguishable from the effect of antibiotics. Severe cases of COVID-19 exhibited a greater abundance of opportunistic pathogens but were depleted for butyrate-producing groups of bacteria compared with mild to moderate cases. We replicated our findings in a mouse COVID-19 model, confirmed virome differences and bacteriome dysbiosis due to SARS-CoV-2 infection, and observed that immune/infection-related genes were differentially expressed in gut epithelial cells during infection, possibly explaining the virome and bacteriome dynamics. Our results suggest that the components of the microbiome, including the bacteriome and virome, are affected by SARS-CoV-2 infections, while their compositional signatures could reflect or even contribute to disease severity and recovery processes.

COVID-19/microbiology , COVID-19/virology , Dysbiosis/diagnosis , Gastrointestinal Microbiome , Virome , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Anti-Bacterial Agents/therapeutic use , COVID-19/therapy , Case-Control Studies , China , Disease Models, Animal , Female , Genome, Viral , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs , Middle Aged , Transcriptome