Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Exploration (Beijing) ; 1(2): 20210051, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1797903

ABSTRACT

Effective treatment of patients with severe COVID-19 to reduce mortality remains one of the most challenging medical issues in controlling unpredictable emergencies caused by the global pandemics. Unfortunately, such effective therapies are not available at this time of writing. In this article, I discuss the possibility of repurposing clinically available anti-VEGF (vascular endothelial growth factor) drugs that are routinely used in oncology and ophthalmology areas for effective treatment of patients with severe and critical COVID-19. Our preliminary findings from a clinical trial support the therapeutic concept of using anti-VEGF for treating patients with severe COVID-19 to reduce mortality. The aim of this article is to further provide mechanistic insights into the role of VEGF in causing pathological changes during COVID-19 infection.

2.
Exploration ; 1(2), 2021.
Article in English | EuropePMC | ID: covidwho-1563955

ABSTRACT

Effective treatment of patients with severe COVID‐19 to reduce mortality remains one of the most challenging medical issues in controlling unpredictable emergencies caused by the global pandemics. Unfortunately, such effective therapies are not available at this time of writing. In this article, I discuss the possibility of repurposing clinically available anti‐VEGF (vascular endothelial growth factor) drugs that are routinely used in oncology and ophthalmology areas for effective treatment of patients with severe and critical COVID‐19. Our preliminary findings from a clinical trial support the therapeutic concept of using anti‐VEGF for treating patients with severe COVID‐19 to reduce mortality. The aim of this article is to further provide mechanistic insights into the role of VEGF in causing pathological changes during COVID‐19 infection. Leaking plasma from blood vessels triggered by COVID‐19 infection plays a crucial role in causing pulmonary atelectasis (lung collapse), which fills up the lung air sacs with liquid and the lung becomes deflated. If sufficiently large areas of the lung tissue become deflated by this problem, the lung tissue can no longer take enough air and oxygen for the entire body and patients suffer from life‐threatening shortness of breath. This article discusses the possibility of repurposing clinically available drugs designed for treating cancer and eye diseases for the benefit of treating patients with severe COVID‐19 by blocking vascular leakage.

3.
Heliyon ; 7(5): e07134, 2021 May.
Article in English | MEDLINE | ID: covidwho-1240373

ABSTRACT

Most COVID-19 victims are old and die from unrelated causes. Here we present twelve complete autopsies, including two rapid autopsies of young patients where the cause of death was COVID-19 ARDS. The main virus induced pathology was in the lung parenchyma and not in the airways. Most coagulation events occurred in the intra-alveolar and not in the intra-vascular space and the few thrombi were mainly composed of aggregated thrombocytes. The dominant inflammatory response was the massive accumulation of CD163 + macrophages and the disappearance of T killer, NK and B-cells. The virus was replicating in the pneumocytes and macrophages but not in bronchial epithelium, endothelium, pericytes or stromal cells. The lung consolidations were produced by a massive regenerative response, stromal and epithelial proliferation and neovascularization. We suggest that thrombocyte aggregation inhibition, angiogenesis inhibition and general proliferation inhibition may have a roll in the treatment of advanced COVID-19 ARDS.

4.
Nat Commun ; 12(1): 814, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1065864

ABSTRACT

On the basis of Covid-19-induced pulmonary pathological and vascular changes, we hypothesize that the anti-vascular endothelial growth factor (VEGF) drug bevacizumab might be beneficial for treating Covid-19 patients. From Feb 15 to April 5, 2020, we conducted a single-arm trial (NCT04275414) and recruited 26 patients from 2-centers (China and Italy) with severe Covid-19, with respiratory rate ≥30 times/min, oxygen saturation ≤93% with ambient air, or partial arterial oxygen pressure to fraction of inspiration O2 ratio (PaO2/FiO2) >100 mmHg and ≤300 mmHg, and diffuse pneumonia confirmed by chest imaging. Followed up for 28 days. Among these, bevacizumab plus standard care markedly improves the PaO2/FiO2 ratios at days 1 and 7. By day 28, 24 (92%) patients show improvement in oxygen-support status, 17 (65%) patients are discharged, and none show worsen oxygen-support status nor die. Significant reduction of lesion areas/ratios are shown in chest computed tomography (CT) or X-ray within 7 days. Of 14 patients with fever, body temperature normalizes within 72 h in 13 (93%) patients. Relative to comparable controls, bevacizumab shows clinical efficacy by improving oxygenation and shortening oxygen-support duration. Our findings suggest bevacizumab plus standard care is highly beneficial for patients with severe Covid-19. Randomized controlled trial is warranted.


Subject(s)
Bevacizumab/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/drug effects , Aged , Angiogenesis Inhibitors/therapeutic use , Body Temperature/drug effects , COVID-19/virology , China , Female , Fever/prevention & control , Humans , Italy , Male , Middle Aged , SARS-CoV-2/physiology , Treatment Outcome
5.
Nat Rev Mater ; 5(11): 847-860, 2020.
Article in English | MEDLINE | ID: covidwho-880691

ABSTRACT

The ongoing SARS-CoV-2 pandemic highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.

SELECTION OF CITATIONS
SEARCH DETAIL