Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Lancet ; 399(10342): 2212-2225, 2022 06 11.
Article in English | MEDLINE | ID: covidwho-1882655

ABSTRACT

BACKGROUND: Vaccination of children and young people against SARS-CoV-2 is recommended in some countries. Scarce data have been published on immune responses induced by COVID-19 vaccines in people younger than 18 years compared with the same data that are available in adults. METHODS: COV006 is a phase 2, single-blind, randomised, controlled trial of ChAdOx1 nCoV-19 (AZD1222) in children and adolescents at four trial sites in the UK. Healthy participants aged 6-17 years, who did not have a history of chronic respiratory conditions, laboratory-confirmed COVID-19, or previously received capsular group B meningococcal vaccine (the control), were randomly assigned to four groups (4:1:4:1) to receive two intramuscular doses of 5 × 1010 viral particles of ChAdOx1 nCoV-19 or control, 28 days or 84 days apart. Participants, clinical investigators, and the laboratory team were masked to treatment allocation. Study groups were stratified by age, and participants aged 12-17 years were enrolled before those aged 6-11 years. Due to the restrictions in the use of ChAdOx1 nCoV-19 in people younger than 30 years that were introduced during the study, only participants aged 12-17 years who were randomly assigned to the 28-day interval group had received their vaccinations at the intended interval (day 28). The remaining participants received their second dose at day 112. The primary outcome was assessment of safety and tolerability in the safety population, which included all participants who received at least one dose of the study drug. The secondary outcome was immunogenicity, which was assessed in participants who were seronegative to the nucleocapsid protein at baseline and received both prime and boost vaccine. This study is registered with ISRCTN (15638344). FINDINGS: Between Feb 15 and April 2, 2021, 262 participants (150 [57%] participants aged 12-17 years and 112 [43%] aged 6-11 years; due to the change in the UK vaccination policy, the study terminated recruitment of the younger age group before the planned number of participants had been enrolled) were randomly assigned to receive vaccination with two doses of either ChAdOx1 nCoV-19 (n=211 [n=105 at day 28 and n=106 at day 84]) or control (n=51 [n=26 at day 28 and n=25 at day 84]). One participant in the ChAdOx1 nCoV-19 day 28 group in the younger age bracket withdrew their consent before receiving a first dose. Of the participants who received ChAdOx1 nCoV-19, 169 (80%) of 210 participants reported at least one solicited local or systemic adverse event up to 7 days following the first dose, and 146 (76%) of 193 participants following the second dose. No serious adverse events related to ChAdOx1 nCoV-19 administration were recorded by the data cutoff date on Oct 28, 2021. Of the participants who received at least one dose of ChAdOx1 nCoV-19, there were 128 unsolicited adverse events up to 28 days after vaccination reported by 83 (40%) of 210 participants. One participant aged 6-11 years receiving ChAdOx1 nCoV-19 reported a grade 4 fever of 40·2°C on day 1 following first vaccination, which resolved within 24 h. Pain and tenderness were the most common local solicited adverse events for all the ChAdOx1 nCoV-19 and capsular group B meningococcal groups following both doses. Of the 242 participants with available serostatus data, 14 (6%) were seropositive at baseline. Serostatus data were not available for 20 (8%) of 262 participants. Among seronegative participants who received ChAdOx1 nCoV-19, anti-SARS-CoV-2 IgG and pseudoneutralising antibody titres at day 28 after the second dose were higher in participants aged 12-17 years with a longer interval between doses (geometric means of 73 371 arbitrary units [AU]/mL [95% CI 58 685-91 733] and 299 half-maximal inhibitory concentration [IC50; 95% CI 230-390]) compared with those aged 12-17 years who received their vaccines 28 days apart (43 280 AU/mL [95% CI 35 852-52 246] and 150 IC50 [95% CI 116-194]). Humoral responses were higher in those aged 6-11 years than in those aged 12-17 years receiving their second dose at the same 112-day interval (geometric mean ratios 1·48 [95% CI 1·07-2·07] for anti-SARS-CoV-2 IgG and 2·96 [1·89-4·62] for pseudoneutralising antibody titres). Cellular responses peaked after a first dose of ChAdOx1 nCoV-19 across all age and interval groups and remained above baseline after a second vaccination. INTERPRETATION: ChAdOx1 nCoV-19 is well tolerated and immunogenic in children aged 6-17 years, inducing concentrations of antibody that are similar to those associated with high efficacy in phase 3 studies in adults. No safety concerns were raised in this trial. FUNDING: AstraZeneca and the UK Department of Health and Social Care through the UK National Institute for Health and Care Research.


Subject(s)
COVID-19 , Meningococcal Vaccines , Adolescent , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Double-Blind Method , Humans , Immunoglobulin G , SARS-CoV-2 , Single-Blind Method
2.
JCI Insight ; 7(7)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1702851

ABSTRACT

Duration of protection from SARS-CoV-2 infection in people living with HIV (PWH) following vaccination is unclear. In a substudy of the phase II/III the COV002 trial (NCT04400838), 54 HIV+ male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells > 350 cells/µL) received 2 doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and Meso Scale Discovery [MSD]), neutralization, ACE-2 inhibition, IFN-γ ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that, 6 months after vaccination, the majority of measurable immune responses were greater than prevaccination baseline but with evidence of a decline in both humoral and cell-mediated immunity. There was, however, no significant difference compared with a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although they were lower than WT. Preexisting cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater postvaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the ongoing policy to vaccinate PWH against SARS-CoV-2, and they underpin the need for long-term monitoring of responses after vaccination.


Subject(s)
COVID-19 , HIV Infections , COVID-19/prevention & control , HIV Infections/drug therapy , Humans , Male , SARS-CoV-2 , Vaccination
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310655

ABSTRACT

Background: The ChAdOx1 nCoV-19 (AZD1222) vaccine is immunogenic and protects against COVID-19. However, data on vaccine immunogenicity are needed for the 40 million people living with HIV (PWH), who may have less functional immunity and more associated co-morbidities than the general population. Methods: Between the 5th and 24th November 2020, 54 adults with HIV, aged 18-55 years, were enrolled into a single arm open label vaccination study within the protocol of the larger phase 2/3 COV002 trial. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses (5 × 1010 vp) was given 4-6 weeks apart. All participants were on antiretroviral therapy (ART) with undetectable plasma HIV viral loads and CD4+ T cell counts >350 cells/µl at enrolment. Data were captured on adverse events. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo interferon-γ enzyme-linked immunospot assay (ELISpot) and T cell proliferation. All outcomes were compared with a HIV uninfected group from the main COV002 study.Findings: 54 participants with HIV (median age 42.5 years (IQR 37.2-49.8)) received two doses of ChAdOx1 nCoV-19. Median CD4+ T cell count at enrolment was 694 cells/µl (IQR 562-864). Results are reported for 56 days of follow-up. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (49%), fatigue (47%), headache (47%), malaise (34%), chills (23%), and muscle or (36%) joint pain (9%), the frequencies of which were similar to the HIV-negative participants. There were no serious adverse events. Anti-spike IgG responses by ELISA peaked at Day 42 (median 1440 ELISA units, IQR 704-2728) and were sustained out to Day 56. There was no correlation with CD4+ T cell count or age and the magnitude of the anti-spike IgG response at Day 56 (P>0.05 for both). ELISpot and T cell proliferative responses peaked between Day 14 and 28 after prime and were sustained through to Day 56. When compared to participants without HIV there was no statistical difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (P>0.05 for all analyses).Interpretation: In this study of PWH, vaccination with ChAdOx1 nCoV-19 was well tolerated and there was no difference in humoral and cell-mediated immune responses compared to an adult cohort without HIV who received the same vaccination regime. Trial Registration: Trial Registration number is NCT04400838. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19 (AZD1222). AstraZeneca reviewed the data from the study and the final manuscript before 474 submission, but the authors retained editorial control. SCG is cofounder of Vaccitech (a collaborator in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine. TL is named as an inventor on a patent application covering this SARS-CoV-2 vaccine and was consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AVSH is a cofounder of and consultant to Vaccitech and is named as an inventor on a patent covering design and use of ChAdOx1-vectored vaccines (PCT/GB2012/0004 7).Ethical Approval: Written informed consent was obtained from all participants, and the trial was done in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. This study was approved in the UK by the Medicines and Healthcare products Regulatory Agency (reference 21584/0424/001-0001) and the South Central Berkshire Research Ethics Committee (reference 20/SC/0145). Vaccine use was authorised by Genetically Modified Organisms Safety Committees at each participating site.

4.
J Immunother Cancer ; 9(9)2021 09.
Article in English | MEDLINE | ID: covidwho-1403102

ABSTRACT

BACKGROUND: The clinical benefit of immune checkpoint blockade (ICB) therapy is often limited by the lack of pre-existing CD8+ T cells infiltrating the tumor. In principle, CD8+ T-cell infiltration could be promoted by therapeutic vaccination. However, this remains challenging given the paucity of vaccine platforms able to induce the strong cytotoxic CD8+ T-cell response required to reject tumors. A therapeutic cancer vaccine that induces a robust cytotoxic CD8+ T-cell response against shared tumor antigens and can be combined with ICB could improve the outcome of cancer immunotherapy. METHODS: Here, we developed a heterologous prime-boost vaccine based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding MAGE-type antigens, which are tumor-specific shared antigens expressed in different tumor types. The mouse MAGE-type antigen P1A was used as a surrogate to study the efficacy of the vaccine in combination with ICB in murine tumor models expressing the P1A antigen. To characterize the vaccine-induced immune response, we performed flow cytometry and transcriptomic analyses. RESULTS: The ChAdOx1/MVA vaccine displayed strong immunogenicity with potent induction of CD8+ T cells. When combined with anti-Programmed Cell Death Protein 1 (PD-1), the vaccine induced superior tumor clearance and survival in murine tumor models expressing P1A compared with anti-PD-1 alone. Remarkably, ChAdOx1/MVA P1A vaccination promoted CD8+ T-cell infiltration in the tumors, and drove inflammation in the tumor microenvironment, turning 'cold' tumors into 'hot' tumors. Single-cell transcriptomic analysis of the P1A-specific CD8+ T cells revealed an expanded population of stem-like T cells in the spleen after the combination treatment as compared with vaccine alone, and a reduced PD-1 expression in the tumor CD8+ T cells. CONCLUSIONS: These findings highlight the synergistic potency of ChAdOx1/MVA MAGE vaccines combined with anti-PD-1 for cancer therapy, and establish the foundation for clinical translation of this approach. A clinical trial of ChadOx1/MVA MAGE-A3/NY-ESO-1 combined with anti-PD-1 will commence shortly.


Subject(s)
Antigens, Heterophile/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Vaccination/methods , Animals , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Mice , Tumor Microenvironment
5.
Lancet ; 398(10304): 981-990, 2021 09 11.
Article in English | MEDLINE | ID: covidwho-1386827

ABSTRACT

BACKGROUND: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between the first and second dose becomes longer. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44-45 weeks) between the first and second dose, and response to a third dose as a booster given 28-38 weeks after the second dose. METHODS: In this substudy, volunteers aged 18-55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination. Here we report the reactogenicity and immunogenicity of a delayed second dose (44-45 weeks after first dose) or a third dose of the vaccine (28-38 weeks after second dose). Data from volunteers aged 18-55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002), single-blinded, randomised controlled trials of ChAdOx1 nCoV-19 and who had previously received a single dose or two doses of 5 × 1010 viral particles are used for comparison purposes. COV001 is registered with ClinicalTrials.gov, NCT04324606, and ISRCTN, 15281137, and COV002 is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137, and both are continuing but not recruiting. FINDINGS: Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses. The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8-12 weeks: 267 [83%] of 321; 15-25 weeks: 24 [7%]; or 44-45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8-12 weeks: 115 [44%] of 261; 15-25 weeks: 116 [44%]; and 44-45 weeks: 30 [11%]). 480 participants from the single-dose cohort were assessable for immunogenicity up to 44-45 weeks after vaccination. Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83-91·08] vs 1·75 EUs [1·60-1·93]). 32 participants received a late second dose of vaccine 44-45 weeks after the first dose, of whom 30 were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525-1764] with an 8-12 week interval; 1860 EUs [917-4934] with a 15-25 week interval; and 3738 EUs [1824-6625] with a 44-45 week interval). Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047-6420]) than 28 days after a second dose (median 1792 EUs [IQR 899-4634]; Wilcoxon signed rank test p=0·0043). T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs; IQR 127-389] immediately before the third dose to 399 SFUs per milion PBMCs [314-662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012). Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose. INTERPRETATION: An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses. FUNDING: UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, AstraZeneca, and Wellcome.


Subject(s)
COVID-19 Vaccines/administration & dosage , Immunogenicity, Vaccine/immunology , Randomized Controlled Trials as Topic , Vaccination , Adult , Female , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Time Factors , United Kingdom
7.
Lancet HIV ; 8(8): e474-e485, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275800

ABSTRACT

BACKGROUND: Data on vaccine immunogenicity against SARS-CoV-2 are needed for the 40 million people globally living with HIV who might have less functional immunity and more associated comorbidities than the general population. We aimed to explore safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV. METHODS: In this single-arm open-label vaccination substudy within the protocol of the larger phase 2/3 trial COV002, adults aged 18-55 years with HIV were enrolled at two HIV clinics in London, UK. Eligible participants were required to be on antiretroviral therapy (ART), with undetectable plasma HIV viral loads (<50 copies per mL), and CD4 counts of more than 350 cells per µL. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses was given 4-6 weeks apart. The primary outcomes for this substudy were safety and reactogenicity of the vaccine, as determined by serious adverse events and solicited local and systemic reactions. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo IFN-γ enzyme-linked immunospot assay (ELISpot) and T-cell proliferation. All outcomes were compared with an HIV-uninfected group from the main COV002 study within the same age group and dosing strategy and are reported until day 56 after prime vaccination. Outcomes were analysed in all participants who received both doses and with available samples. The COV002 study is registered with ClinicalTrials.gov, NCT04400838, and is ongoing. FINDINGS: Between Nov 5 and Nov 24, 2020, 54 participants with HIV (all male, median age 42·5 years [IQR 37·2-49·8]) were enrolled and received two doses of ChAdOx1 nCoV-19. Median CD4 count at enrolment was 694·0 cells per µL (IQR 573·5-859·5). No serious adverse events occurred. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (26 [49%] of 53 participants with available data), fatigue (25 [47%]), headache (25 [47%]), malaise (18 [34%]), chills (12 [23%]), muscle ache (19 [36%]), joint pain (five [9%]), and nausea (four [8%]), the frequencies of which were similar to the HIV-negative participants. Anti-spike IgG responses by ELISA peaked at day 42 (median 1440 ELISA units [EUs; IQR 704-2728]; n=50) and were sustained until day 56 (median 941 EUs [531-1445]; n=49). We found no correlation between the magnitude of the anti-spike IgG response at day 56 and CD4 cell count (p=0·93) or age (p=0·48). ELISpot and T-cell proliferative responses peaked at day 14 and 28 after prime dose and were sustained to day 56. Compared with participants without HIV, we found no difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (p>0·05 for all analyses). INTERPRETATION: In this study of people with HIV, ChAdOx1 nCoV-19 was safe and immunogenic, supporting vaccination for those well controlled on ART. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , HIV Infections/immunology , SARS-CoV-2/immunology , Adult , CD4 Lymphocyte Count , COVID-19 Vaccines/adverse effects , HIV Infections/drug therapy , Humans , Male , Middle Aged , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL