Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Public Health ; 10: 961030, 2022.
Article in English | MEDLINE | ID: covidwho-2022985

ABSTRACT

Purpose: We aim to compare the severity of infections between omicron and delta variants in 609,352 SARS-CoV-2 positive cases using local hospitalization, vaccination, and variants data from the Catalan Health Care System (which covers around 7. 8 million people). Methods: We performed a substitution model to establish the increase in transmissibility of omicron using variant screening data from primary care practices (PCP) and hospital admissions. In addition, we used this data from PCP to establish the two periods when delta and omicron were, respectively, dominant (above 95% of cases). After that, we performed a population-based cohort analysis to calculate the rates of hospital and intensive care unit (ICU) admissions for both periods and to estimate reduction in severity. Rate ratios (RR) and 95% confidence intervals (95% CI) were calculated and stratified by age and vaccination status. In a second analysis, the differential substitution model in primary care vs. hospitals allowed us to obtain a population-level average change in severity. Results: We have included 48,874 cases during the delta period and 560,658 during the omicron period. During the delta period, on average, 3.8% of the detected cases required hospitalization for COVID-19. This percentage dropped to 0.9% with omicron [RR of 0.46 (95% CI: 0.43 to 0.49)]. For ICU admissions, it dropped from 0.8 to 0.1% [RR 0.25 (95% CI: 0.21 to 0.28)]. The proportion of cases hospitalized or admitted to ICU was lower in the vaccinated groups, independently of the variant. Omicron was associated with a reduction in risk of admission to hospital and ICU in all age and vaccination status strata. The differential substitution models showed an average RR between 0.19 and 0.50. Conclusion: Both independent methods consistently show an important decrease in severity for omicron relative to delta. The systematic reduction happens regardless of age. The severity is also reduced for non-vaccinated and vaccinated groups, but it remains always higher in the non-vaccinated population. This suggests an overall reduction in severity, which could be intrinsic to the omicron variant. The fact is that the RR in ICU admission is systematically smaller than in hospitalization points in the same direction.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Critical Care , Hospitalization , Humans , Spain
2.
Viruses ; 14(7)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911653

ABSTRACT

The implementation of vaccination among healthcare workers (HCWs) allowed the management of the pandemic in a manner that differed from that in the first waves. It has been demonstrated that the mRNA vaccines elicit good humoral responses but that there are still breakthrough infections. In summer 2021, a fifth wave emerged, despite the good coverage of HCWs in Spain. We aimed to study the SARS-CoV-2 IgG antibody levels as a marker to predict the possibility of Delta variant infections after vaccination after a seroepidemiological campaign. Of the 5000 participants, a total of 4902 (98.04%) showed a positive result in the serological anti-S test and only 98 (1.96%) were negative. Among the 4368 fully vaccinated participants, only in five cases was the serology negative. Of the total number of participants that received antibody results during the study, 162 were PCR positive in the subsequent two months. Among these, 151 were fully vaccinated (two doses). Significant differences between antibody BAU/mL levels were found between PCR positive and non-PCR positive participants (p < 0.01). The median of BAU/mL was higher in those vaccinated patients with no infection (1260 BAU/mL; 465-2080) versus infected patients (661 BAU/mL; 361-2080). These data support the idea that vaccines play an important role in the control of the pandemic, especially among HCWs at the time of the Delta variant circulation. More studies with other variants of concern must be performed in order to establish a correlation between the levels of IgG and the new infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , Follow-Up Studies , Health Personnel , Humans , SARS-CoV-2/genetics , Vaccination
4.
BMJ Open ; 11(11): e052140, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537954

ABSTRACT

DESIGN AND OBJECTIVES: A cross-sectional study to evaluate the impact of COVID-19 on the psychosocial sphere in both the general population and healthcare workers (HCWs). METHODS: The study was conducted in Catalonia (Spain) during the first wave of the COVID-19 pandemic when strict lockdown was in force. The study population included all people aged over 16 years who consented to participate in the study and completed the survey, in this case a 74-question questionnaire shared via social media using snowball sampling. A total of 56 656 completed survey questionnaires were obtained between 3 and 19 April 2020.The primary and secondary outcome measures included descriptive statistics for the non-psychological questions and the psychological impact of the pandemic, such as depression, anxiety, stress and post-traumatic stress disorder question scores. RESULTS: A n early and markedly negative impact on family finances, fear of working with COVID-19 patients and ethical issues related to COVID-19 care among HCWs was observed. A total of seven target groups at higher risk of impaired mental health and which may therefore benefit from an intervention were identified, namely women, subjects aged less than 42 years, people with a care burden, socioeconomically deprived groups, people with unskilled or unqualified jobs, patients with COVID-19 and HCWs working with patients with COVID-19. CONCLUSIONS: Active implementation of specific strategies to increase resilience and to prepare an adequate organisational response should be encouraged for the seven groups identified as high risk and susceptible to benefit from an intervention. TRIAL REGISTRATION NUMBER: NCT04378452.


Subject(s)
COVID-19 , Pandemics , Anxiety , Communicable Disease Control , Cross-Sectional Studies , Depression , Female , Humans , SARS-CoV-2 , Spain/epidemiology , Vulnerable Populations
5.
Front Public Health ; 9: 633123, 2021.
Article in English | MEDLINE | ID: covidwho-1325582

ABSTRACT

The current worldwide pandemic produced by coronavirus disease 2019 (COVID-19) has changed the paradigm of mathematical epidemiology due to the high number of unknowns of this new disease. Thus, the empirical approach has emerged as a robust tool to analyze the actual situation carried by the countries and also allows us to predict the incoming scenarios. In this paper, we propose three empirical indexes to estimate the state of the pandemic. These indexes quantify both the propagation and the number of estimated cases, allowing us to accurately determine the real risk of a country. We have calculated these indexes' evolution for several European countries. Risk diagrams are introduced as a tool to visualize the evolution of a country and evaluate its current risk as a function of the number of contagious individuals and the empiric reproduction number. Risk diagrams at the regional level are useful to observe heterogeneity on COVID-19 penetration and spreading in some countries, which is essential during deconfinement processes. During the pandemic, there have been significant differences seen in countries reporting case criterion and detection capacity. Therefore, we have introduced estimations about the real number of infectious cases that allows us to have a broader view and to better estimate the risk. These diagrams and indexes have been successfully used for the monitoring of European countries and regions during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Europe , Humans , SARS-CoV-2
6.
PLoS One ; 16(1): e0243701, 2021.
Article in English | MEDLINE | ID: covidwho-1060187

ABSTRACT

Policymakers need clear, fast assessment of the real spread of the COVID-19 epidemic in each of their respective countries. Standard measures of the situation provided by the governments include reported positive cases and total deaths. While total deaths indicate immediately that countries like Italy and Spain had the worst situation as of mid-April, 2020, reported cases alone do not provide a complete picture of the situation. Different countries diagnose differently and present very distinctive reported case fatality ratios. Similar levels of reported incidence and mortality might hide a very different underlying pictures. Here we present a straightforward and robust estimation of the diagnostic rate in each European country. From that estimation we obtain a uniform, unbiased incidence of the epidemic. The method to obtain the diagnostic rate is transparent and empirical. The key assumption of the method is that the infection fatality ratio of COVID-19 in Europe is not strongly country-dependent. We show that this number is not expected to be biased due to demography nor to the way total deaths are reported. The estimation protocol is dynamic, and it has been yielding converging numbers for diagnostic rates in all European countries as from mid-April, 2020. Using this diagnostic rate, policy makers can obtain Effective Potential Growth updated every day, providing an unbiased assessment of the countries at greater risk of experiencing an uncontrolled situation. The method developed has been and will be used to track possible improvements in the diagnostic rate in European countries as the epidemic evolves.


Subject(s)
COVID-19/epidemiology , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/mortality , COVID-19/prevention & control , Communicable Disease Control , Europe/epidemiology , European Union , Health Policy , Humans , Incidence
7.
PLoS Comput Biol ; 16(12): e1008431, 2020 12.
Article in English | MEDLINE | ID: covidwho-965902

ABSTRACT

The appearance and fast spreading of Covid-19 took the international community by surprise. Collaboration between researchers, public health workers, and politicians has been established to deal with the epidemic. One important contribution from researchers in epidemiology is the analysis of trends so that both the current state and short-term future trends can be carefully evaluated. Gompertz model has been shown to correctly describe the dynamics of cumulative confirmed cases, since it is characterized by a decrease in growth rate showing the effect of control measures. Thus, it provides a way to systematically quantify the Covid-19 spreading velocity and it allows short-term predictions and longer-term estimations. This model has been employed to fit the cumulative cases of Covid-19 from several European countries. Results show that there are systematic differences in spreading velocity among countries. The model predictions provide a reliable picture of the short-term evolution in countries that are in the initial stages of the Covid-19 outbreak, and may permit researchers to uncover some characteristics of the long-term evolution. These predictions can also be generalized to calculate short-term hospital and intensive care units (ICU) requirements.


Subject(s)
COVID-19 , Models, Statistical , COVID-19/epidemiology , COVID-19/transmission , Computational Biology , Europe , Humans , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL