Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Infect Dis ; 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1692242

ABSTRACT

Antibody decline occurred from 2 weeks to 6 months post-BNT162b2 mRNA vaccination in nursing home (NH) residents and healthcare workers. Antispike, receptor-binding domain, and neutralization levels dropped >81% irrespective of prior infection. Notably, 69% of infection-naive NH residents had neutralizing antibodies at or below the assay's limit of detection.

2.
Clin Infect Dis ; 73(11): 2112-2115, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1562012

ABSTRACT

After BNT162b2 messenger RNA vaccination, antibody levels to spike, receptor-binding domain, and virus neutralization were examined in 149 nursing home residents and 110 healthcare worker controls. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive nursing home residents' median post-second vaccine dose antibody neutralization titers are one-quarter that of SARS-CoV-2-naive healthcare workers.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Nursing Homes , RNA, Messenger , Vaccines, Synthetic
3.
Aging Clin Exp Res ; 33(11): 3151-3160, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525638

ABSTRACT

BACKGROUND: The BNT162b2 SARS-CoV-2 mRNA vaccination has mitigated the burden of COVID-19 among residents of long-term care facilities considerably, despite being excluded from the vaccine trials. Data on reactogenicity (vaccine side effects) in this population are limited. AIMS: To assess reactogenicity among nursing home (NH) residents. To provide a plausible proxy for predicting vaccine response among this population. METHODS: We enrolled and sampled NH residents and community-dwelling healthcare workers who received the BNT162b2 mRNA vaccine, to assess local or systemic reactogenicity and antibody levels (immunogenicity). RESULTS: NH residents reported reactions at a much lower frequency and lesser severity than the community-dwelling healthcare workers. These reactions were mild and transient with all subjects experiencing more local than systemic reactions. Based on our reactogenicity and immunogenicity data, we developed a linear regression model predicting log-transformed anti-spike, anti-receptor-binding domain (RBD), and neutralizing titers, with a dichotomous variable indicating the presence or absence of reported reactions which revealed a statistically significant effect, with estimated shifts in log-transformed titers ranging from 0.32 to 0.37 (all p < 0.01) indicating greater immunogenicity in subjects with one or more reported reactions of varying severity. DISCUSSION: With a significantly lower incidence of post-vaccination reactions among NH residents as reported in this study, the BNT162b2 mRNA vaccine appears to be well-tolerated among this vulnerable population. If validated in larger populations, absence of reactogenicity could help guide clinicians in prioritizing vaccine boosters. CONCLUSIONS: Reactogenicity is significantly mild among nursing home residents and overall, subjects who reported post-vaccination reactions developed higher antibody titers.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Health Personnel , Humans , Nursing Homes , RNA, Messenger/genetics , SARS-CoV-2
4.
Aging Clin Exp Res ; 33(11): 3151-3160, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1469796

ABSTRACT

BACKGROUND: The BNT162b2 SARS-CoV-2 mRNA vaccination has mitigated the burden of COVID-19 among residents of long-term care facilities considerably, despite being excluded from the vaccine trials. Data on reactogenicity (vaccine side effects) in this population are limited. AIMS: To assess reactogenicity among nursing home (NH) residents. To provide a plausible proxy for predicting vaccine response among this population. METHODS: We enrolled and sampled NH residents and community-dwelling healthcare workers who received the BNT162b2 mRNA vaccine, to assess local or systemic reactogenicity and antibody levels (immunogenicity). RESULTS: NH residents reported reactions at a much lower frequency and lesser severity than the community-dwelling healthcare workers. These reactions were mild and transient with all subjects experiencing more local than systemic reactions. Based on our reactogenicity and immunogenicity data, we developed a linear regression model predicting log-transformed anti-spike, anti-receptor-binding domain (RBD), and neutralizing titers, with a dichotomous variable indicating the presence or absence of reported reactions which revealed a statistically significant effect, with estimated shifts in log-transformed titers ranging from 0.32 to 0.37 (all p < 0.01) indicating greater immunogenicity in subjects with one or more reported reactions of varying severity. DISCUSSION: With a significantly lower incidence of post-vaccination reactions among NH residents as reported in this study, the BNT162b2 mRNA vaccine appears to be well-tolerated among this vulnerable population. If validated in larger populations, absence of reactogenicity could help guide clinicians in prioritizing vaccine boosters. CONCLUSIONS: Reactogenicity is significantly mild among nursing home residents and overall, subjects who reported post-vaccination reactions developed higher antibody titers.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Health Personnel , Humans , Nursing Homes , RNA, Messenger/genetics , SARS-CoV-2
5.
J Extracell Vesicles ; 10(8): e12112, 2021 06.
Article in English | MEDLINE | ID: covidwho-1272198

ABSTRACT

In late 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. SARS-CoV-2 and the disease it causes, coronavirus disease 2019 (COVID-19), spread rapidly and became a global pandemic in early 2020. SARS-CoV-2 spike protein is responsible for viral entry and binds to angiotensin converting enzyme 2 (ACE2) on host cells, making it a major target of the immune system - particularly neutralizing antibodies (nAbs) that are induced by infection or vaccines. Extracellular vesicles (EVs) are small membraned particles constitutively released by cells, including virally-infected cells. EVs and viruses enclosed within lipid membranes share some characteristics: they are small, sub-micron particles and they overlap in cellular biogenesis and egress routes. Given their shared characteristics, we hypothesized that EVs released from spike-expressing cells could carry spike and serve as decoys for anti-spike nAbs, promoting viral infection. Here, using mass spectrometry and nanoscale flow cytometry (NFC) approaches, we demonstrate that SARS-CoV-2 spike protein can be incorporated into EVs. Furthermore, we show that spike-carrying EVs act as decoy targets for convalescent patient serum-derived nAbs, reducing their effectiveness in blocking viral entry. These findings have important implications for the pathogenesis of SARS-CoV-2 infection in vivo and highlight the complex interplay between viruses, extracellular vesicles, and the immune system that occurs during viral infections.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/therapy , Extracellular Vesicles/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/immunology , COVID-19/virology , Flow Cytometry , HEK293 Cells , Humans , Immunization, Passive , Protein Binding , Spike Glycoprotein, Coronavirus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL