Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add filters

Year range
1.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Article in English | MEDLINE | ID: covidwho-1622377

ABSTRACT

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Subject(s)
COVID-19/etiology , Disease Models, Animal , SARS-CoV-2 , Age Factors , Animals , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Comorbidity , Humans , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
2.
Cell ; 2022.
Article in English | EuropePMC | ID: covidwho-1601904

ABSTRACT

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses. A comprehensive analysis of sera from vaccinees, convalescent patients infected previously by multiple variants and potent monoclonal antibodies from early in the COVID-19 pandemic reveals a substantial overall reduction the ability to neutralize the SARS-CoV-2 Omicron variant, which a third vaccine dose seems to ameliorate. Structural analyses of the Omicron RBD suggest a selective pressure enabling the virus bind ACE2 with increased affinity that is offset by other changes in the receptor binding motif that facilitates immune escape.

3.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: covidwho-1577032

ABSTRACT

BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Subject(s)
Cross Infection , Influenza, Human , Nanopores , Antiviral Agents/therapeutic use , Cross Infection/diagnosis , Cross Infection/drug therapy , Drug Resistance , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Metagenome , Neuraminidase/genetics , Seasons , United Kingdom
4.
J Infect Dis ; 2021 Dec 11.
Article in English | MEDLINE | ID: covidwho-1566024

ABSTRACT

Co-circulation of SARS-CoV-2 and influenza viruses could pose unpredictable risks to health systems globally, with recent studies suggesting more severe disease outcomes in co-infected patients. The initial lack of a readily available COVID-19 vaccine has reinforced the importance of influenza vaccine programmes during the COVID-19 pandemic. Live Attenuated Influenza Vaccine (LAIV) is an important tool in protecting against influenza, particularly in children. However, it is unknown whether LAIV administration influences the outcomes of acute SARS-CoV-2 infection or disease. To investigate this, quadrivalent LAIV was administered to ferrets 3 days pre- or post-SARS-CoV-2 infection. LAIV administration did not exacerbate SARS-CoV-2 disease course or lung pathology with either regimen. Additionally, LAIV administered prior to SARS-CoV-2 infection significantly reduced SARS-CoV-2 replication and shedding in the upper respiratory tract. This study demonstrated that LAIV administration in close proximity to SARS-CoV-2 infection does not exacerbate mild disease and can reduce SARS-CoV-2 shedding.

5.
Preprint in English | EuropePMC | ID: ppcovidwho-295984

ABSTRACT

Background: Patients with end-stage renal disease (ESRD) are vulnerable to SARS-CoV-2 infection and mount poor antibody responses to standard vaccines. We addressed whether ESRD patients could mount immune responses that protected against re-infection following natural SARS-CoV-2 infection or 2-dose vaccination.Methods: Haemodialysis (HD and renal transplant patients were recruited following SARS-CoV-2 infection (n=46) or before SARS-CoV-2 vaccination (n=94). SARS-CoV-2 IgG responses, surrogate neutralising antibody (NAb) titres to wildtype and VOCs, T cell responses and viral sequencing in the vaccine-naïve convalescent cohort were serially assessed following infection. Surrogate NAb titres were measured pre-vaccination and 33 days after 2nd vaccine. Incidence of breakthrough infection was assessed 180 days following 1st vaccination. Findings: 22% of vaccine-naive HD (n=9/36) and transplant patients (n=1/10) demonstrated PCR-positive re-infection (RI) at median 212 days (IQR 140-239) post 1st infection. Prior to RI episodes, RI patients demonstrated poor IgG Spike and RBD responses which were equivalent to levels in pre-pandemic sera (median RI titres: Spike 187 AU/ml, IQR 143-3432, p=0.96;RBD 145 AU/ml, IQR 85-938, p>0.99), unlike patients who developed a single infection only (SI) when compared to pre-pandemic sera (median SI titres: Spike 22826 AU/ml, IQR 1255-63811, p<0.0001;RBD 9588 AU/ml, IQR 270-21616, p=0.001). IgG Spike and RBD titres increased following RI compared to pre-pandemic sera (median RI titres: Spike 22611 AU/ml, IQR 4488-75509, p=0.0006;RBD 6354 AU/ml, IQR 1671-20962, p=0.01). T cell analysis revealed no differences between RI and SI cohorts. Following 2-dose vaccination, 5% of the HD cohort who received AZD1222 (n=3/61) developed breakthrough infection at 6 months following 1st vaccination, unlike those who received BNT162b2 (n=0/16). AZD1222-vaccinated, infection-naïve (I-N) HD patients (n=32) and immunosuppressed transplant recipients (n=17) made poor NAb responses to wildtype, alpha, beta and gamma when compared to infection-experienced (I-E) HD patients (n=29) (I-N vs I-E HD wildtype p<0.0001, alpha p=0.0007, beta p<0.0001, gamma p=0.002). NAb responses improved with BNT162b2 vaccination (n=16);RI patients mounted larger NAb responses to AZD1222 vaccination than SI patients (wildtype p=0.01, alpha p=0.02, beta p<0.02). Interpretation: ESRD patients are highly susceptible to SARS-CoV-2 re-infection, or breakthrough infection following vaccination, associated with poor protective antibody responses. SARS-CoV-2-specific IgG and surrogate NAb responses increase with repeated exposure (infection experience and/or vaccination) in patients who survive infections. Our findings support the case for specific booster regimens in such immune-incompetent patients. Funding Information: Oxford Transplant Foundation, Oxfordshire Health Services Research Committee, UK Department of Health and Social Care, Huo Family Foundation, NIHR (COV19-RECPLAS), UK Coronavirus Immunology Consortium, NIHR Oxford Biomedical Research Centre, WT109965MA.Declaration of Interests: We declare no competing interestsEthics Approval Statement: Haemodialysis (HD) and transplant cohorts: In this prospective, observational cohort study, HD and transplant patients within Oxford University Hospitals NHS Foundation Trust(OUH) were recruited under Oxford Radcliffe Biobank approved studies, “Biomarkers to stratify risk in Renal Transplant Recipients and Dialysis Patients with Covid-19” (ref: ORB 20/A056), and “Immunological responses to COVID-19 vaccines in transplant and haemodialysis patients” (ref: ORB 21/A014). The Oxford Radcliffe Biobank has a favorable ethics opinion from the South Central Oxford Committee C (REC: 19/SC/0173). Healthcare Worker cohort (HC, PITCH study): PITCH is a sub-study of the SIREN study which was approved by the Berkshire Research Ethics Committee, Health Research 250 Authority (IRAS ID 284 60, REC reference 20/SC/0230), with PITCH recognised as a sub-study on 2 December 2020. SIREN is registered with ISRCTN (Trial ID:252 ISRCTN11041050)The study was conducted in compliance with all relevant ethical regulations for work with human participants, and according to the principles of the Declaration of Helsinki (2008) and the International Conference on Harmonization (ICH) Good Clinical Practice (GCP) guidelines. Written informed consent was obtained for all patients enrolled in the study.

6.
Preprint in English | Other preprints | ID: ppcovidwho-294613

ABSTRACT

Introduction SARS-CoV-2 has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgRNAs has a unique 5’ sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS-junction), that can be identified using sequencing. Results High resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS-junctions and be used as a proxy to quantify sgmRNAs for understanding virus biology. This was tested on published datasets and clinical samples from patients and longitudinal samples from animal models with COVID-19. Discussion LeTRS identified known leader-TRS-junctions and identified novel species that were common across different species. The data indicated multi-phasic abundance of sgmRNAs in two different animal models, with spikes in sgmRNA abundance reflected in human samples, and therefore has implications for transmission models and nucleic acid-based diagnostics.

7.
Preprint in English | EuropePMC | ID: ppcovidwho-293860

ABSTRACT

There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 A of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding would facilitate conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment.<br><br>Funding: This work was supported by a grant from the CAMS-Oxford Institute to D.I.S. E.E.F and J.Ren are supported by the Wellcome Trust (101122/Z/13/Z), Y.Z. by Cancer Research UK (C375/A17721) and D.I.S. and E.E.F. by the UK Medical Research Council (MR/N00065X/1). J.H. is supported by a grant from the EPA Cephalosporin Fund. PPUK is funded by the Rosalind Franklin Institute EPSRC Grant no. EP/S025243/1. The National Institute for Health Research Biomedical Research Centre Funding Scheme supports G.R.S. together with the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Science (CIFMS), China (grant number: 2018-I2M-2-002), which also supports D.I.S. G.R.S. is also supported as a Wellcome Trust Senior Investigator (grant 095541/A/11/Z). T.M. is supported by Cancer Research UK grants C20724/A14414 and C20724/A26752 to Christian Siebold. This is a contribution from the UK Instruct-ERIC Centre. The Wellcome Centre for Human Genetics is supported by the Wellcome Trust (grant 090532/Z/09/Z). Virus used for the neutralisation assays was a gift from Julian Druce, Doherty Centre, Melbourne, Australia. <br><br>Conflict of Interest: The authors declare no competing interests.

8.
Lancet Microbe ; 2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1510521

ABSTRACT

Background: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. Methods: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. Findings: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461-535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099-55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221-242 467] AU/mL; p<0·0001). Interpretation: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. Funding: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.

9.
Theranostics ; 12(1): 1-17, 2022.
Article in English | MEDLINE | ID: covidwho-1512993

ABSTRACT

Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , COVID-19/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Binding Sites , Binding, Competitive , COVID-19/virology , Cricetinae , Cryoelectron Microscopy , Crystallography, X-Ray , Dogs , Epitopes , Female , Humans , Madin Darby Canine Kidney Cells , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
10.
Nat Commun ; 12(1): 5469, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434103

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19/drug therapy , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes/chemistry , Epitopes/metabolism , Female , Male , Mesocricetus , Neutralization Tests , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
12.
Microorganisms ; 9(3)2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1389450

ABSTRACT

To prevent the emergence of zoonotic infectious diseases and reduce their epidemic potential, we need to understand their origins in nature. Bats in the order Chiroptera are widely distributed worldwide and are natural reservoirs of prominent zoonotic viruses, including Nipah virus, Marburg virus, and possibly SARS-CoV-2. In this study, we applied unbiased metagenomic and metatranscriptomic approaches to decipher the virosphere of frugivorous and insectivorous bat species captured in Guéckédou, Guinea, the epicenter of the West African Ebola virus disease epidemic in 2013-2016. Our study provides a snapshot of the viral diversity present in these bat species, with several novel viruses reported for the first time in bats, as well as some bat viruses closely related to known human or animal pathogens. In addition, analysis of Mops condylurus genomic DNA samples revealed the presence of an Ebola virus nucleoprotein (NP)-derived pseudogene inserted in its genome. These findings provide insight into the evolutionary traits of several virus families in bats and add evidence that nonretroviral integrated RNA viruses (NIRVs) derived from filoviruses may be common in bat genomes.

15.
Nat Commun ; 12(1): 5061, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361634

ABSTRACT

The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Carrier Proteins , Epitopes , Humans , Immunity , SARS-CoV-2/drug effects , T-Lymphocytes/immunology
16.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1343152

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology
17.
Commun Biol ; 4(1): 915, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327224

ABSTRACT

Vaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titre were boosted by a second dose. Data from these challenge models on the absence of enhanced disease and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Ferrets , Macaca mulatta
18.
mSphere ; 6(4): e0021921, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1319381

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic infection that emerged in the Middle East in 2012. Symptoms range from mild to severe and include both respiratory and gastrointestinal illnesses. The virus is mainly present in camel populations with occasional zoonotic spill over into humans. The severity of infection in humans is influenced by numerous factors, and similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underlying health complications can play a major role. Currently, MERS-CoV and SARS-CoV-2 are coincident in the Middle East and thus a rapid way of sequencing MERS-CoV to derive genotype information for molecular epidemiology is needed. Additionally, complicating factors in MERS-CoV infections are coinfections that require clinical management. The ability to rapidly characterize these infections would be advantageous. To rapidly sequence MERS-CoV, an amplicon-based approach was developed and coupled to Oxford Nanopore long read length sequencing. This and a metagenomic approach were evaluated with clinical samples from patients with MERS. The data illustrated that whole-genome or near-whole-genome information on MERS-CoV could be rapidly obtained. This approach provided data on both consensus genomes and the presence of minor variants, including deletion mutants. The metagenomic analysis provided information of the background microbiome. The advantage of this approach is that insertions and deletions can be identified, which are the major drivers of genotype change in coronaviruses. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. The virus is a serious threat to people not only in the Middle East but also in the world and has been detected in over 27 countries. MERS-CoV is spreading in the Middle East and neighboring countries, and approximately 35% of reported patients with this virus have died. This is the most severe coronavirus infection so far described. Saudi Arabia is a destination for many millions of people in the world who visit for religious purposes (Umrah and Hajj), and so it is a very vulnerable area, which imposes unique challenges for effective control of this epidemic. The significance of our study is that clinical samples from patients with MERS were used for rapid in-depth sequencing and metagenomic analysis using long read length sequencing.


Subject(s)
Coronavirus Infections/virology , Microbiota/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Aged , Animals , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics
19.
Sci Rep ; 11(1): 14723, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1317811

ABSTRACT

The source of the COVID-19 pandemic is unknown, but the natural host of the progenitor sarbecovirus is thought to be Asian horseshoe (rhinolophid) bats. We identified and sequenced a novel sarbecovirus (RhGB01) from a British horseshoe bat, at the western extreme of the rhinolophid range. Our results extend both the geographic and species ranges of sarbecoviruses and suggest their presence throughout the horseshoe bat distribution. Within the spike protein receptor binding domain, but excluding the receptor binding motif, RhGB01 has a 77% (SARS-CoV-2) and 81% (SARS-CoV) amino acid homology. While apparently lacking hACE2 binding ability, and hence unlikely to be zoonotic without mutation, RhGB01 presents opportunity for SARS-CoV-2 and other sarbecovirus homologous recombination. Our findings highlight that the natural distribution of sarbecoviruses and opportunities for recombination through intermediate host co-infection are underestimated. Preventing transmission of SARS-CoV-2 to bats is critical with the current global mass vaccination campaign against this virus.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/isolation & purification , Chiroptera/virology , Amino Acid Sequence , Animals , Europe , Genome, Viral , Metagenomics , Phylogeny , SARS Virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
20.
Vaccine ; 39(34): 4885-4894, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1284599

ABSTRACT

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Macaca mulatta , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...