Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334201

ABSTRACT

ABSTRACT Pre-mRNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Fifty-six rare variants in 44 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach has been available to efficiently detect such variants in next-generation sequencing (NGS) data. We established a comprehensive human genome-wide BP database by integrating existing BP data, and by generating new BP data from RNA-seq of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We in-depth characterize multiple features of BP in major and minor introns, and find that BP and BP-2 (two-nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, whilst being comparable to the exonic background. We develop BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition in NGS data. BPHunter retrospectively identifies 48 of the 56 known pathogenic BP mutations in which we summarize a strategy for prioritizing BP mutation candidates, and the remaining 8 all create AG dinucleotides between BP and acceptor site which is probably the reason for mis-splicing. We demonstrate the utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia, and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which we validate experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter .

3.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: covidwho-1758591

ABSTRACT

The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.


Subject(s)
COVID-19 , Candidiasis, Chronic Mucocutaneous , Communicable Diseases , Pulmonary Alveolar Proteinosis , Autoantibodies , Candidiasis, Chronic Mucocutaneous/genetics , Humans
4.
Cytokine Growth Factor Rev ; 63: 23-33, 2022 02.
Article in English | MEDLINE | ID: covidwho-1729672

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disruptive global consequences in terms of mortality and social and economic crises, have taught lessons that may help define strategies to better face future pandemics. Innate and intrinsic immunity form the front-line natural antiviral defense. They involve both tissue-resident and circulating cells, which can produce anti-viral molecules shortly after viral infection. Prototypes of these factors are type I interferons (IFN), antiviral cytokines with a long record of clinical use. During the last two years, there has been an impressive progress in understanding the mechanisms of both SARS-CoV-2 infection and the cellular and soluble antiviral responses occurring early after viral exposure. However, this information was not sufficiently translated into therapeutic approaches. Insufficient type I IFN activity probably accounts for disease progression in many patients. This results from both the multiple interfering mechanisms developed by SARS-CoV-2 to decrease type I IFN response and various pre-existing human deficits of type I IFN activity, inherited or auto-immune. Emerging data suggest that IFN-I-mediated boosting of patients' immunity, achieved directly through the exogenous administration of IFN-ß early post viral infection, or indirectly following inoculation of heterologous vaccines (e.g., Bacillus Calmette Guerin), might play a role against SARS-CoV-2. We review how recent insights on the viral and human determinants of critical COVID-19 pneumonia can foster clinical studies of IFN therapy. We also discuss how early therapeutic use of IFN-ß and prophylactic campaigns with live attenuated vaccines might prevent a first wave of new pandemic viruses.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Pandemics/prevention & control , SARS-CoV-2
6.
Mult Scler ; : 13524585211069068, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1700239

ABSTRACT

Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307952

ABSTRACT

SARS-CoV-2 infection in children is generally milder than in adults, yet a proportion of cases result in hyperinflammatory conditions often including myocarditis. To better understand these cases, we applied a multi-parametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. The most severe forms of MIS-C (multisystem inflammatory syndrome in children related to SARS-CoV-2), that resulted in myocarditis, were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomic analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis, characterized by sustained NF-κ B activity, TNF-α signaling, associated with decreased gene expression of NF-κ B inhibitors. We also found a weak response to type-I and type-II interferons, hyperinflammation and response to oxidative stress related to increased HIF-1α and VEGF signaling. These results provide potential for a better understanding of disease pathophysiology.Funding: The study was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), by the “URGENCE COVID-19” fundraising campaign of Institut Pasteur, by the Atip-Avenir, Emergence ville de Paris program and fond de dotation Janssen Horizon and by government grants managed by the Agence National de la Recherche as part of the “Investment for the Future” program (Institut Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01, Recherche Hospitalo-Universitaire, grant ANR-18-RHUS-0010, Laboratoire d’Excellence ‘‘Milieu Intérieur”, grant ANR-10-LABX-69-01), the Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH), the Agence National de la Recherche (ANR-flash Covid19 “AIROCovid” to FRL and “CoVarImm” to DD and JDS), and by the FASTFoundation (French Friends of Sheba Tel Hashomer Hospital). The LabTech Single-Cell@Imagine is supported by the Paris Region and the “Investissements d’avenir” program through the 2019 ATF funding – Sésame Filières PIA (Grant N°3877871).CdC is the recipient of a CIFRE-PhD (Sanofi). L.B. was a recipient of an Imagine institute PhD international program supported by the Fondation Bettencourt Schueller. L.B. was also supported by the EUR G.E.N.E. (reference #ANR-17-EURE-0013) and is part of the Université de Paris IdEx #ANR-18-IDEX-0001 funded by the French Government through its“Investments for the Future” program. S.M. was a recipient of an INSERM and Institut Imagine post-doctorat program supported by the Fondation pour la Recherche Médicale (FRMN°SPF20170938825). NS was a recipient of the Pasteur-Roux-Cantarini Fellowship. VGP obtained an Imagine international PhD fellowship program supported by the Fondation Bettencourt Schueller. BPP is the recipient of an ANRS post-doctoral fellowship.Conflict of Interest: DD, FRL, JT and MMM are listed as inventors on a patent application related to this technology (European Patent Application no. EP21305197, entitled “Methods of predicting multisystem inflammatory syndrome (MIS-C) with severe myocarditis in subjects suffering from a SARS-CoV-2 infection”).Ethical Approval: The study was approved by the Ethics Committee (Comité de Protection des Personnes Ouest IV, n° DC-2017-2987).

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310899

ABSTRACT

Background: In a recent study, autoantibodies neutralizing type I interferons (IFNs) were present in at least 10% of cases of critical COVID-19 pneumonia. These autoantibodies neutralized most type I IFNs but rarely IFN-beta. Objectives: We aimed to define the prevalence of autoantibodies neutralizing type I IFN in a cohort of patients with severe COVID-19 pneumonia treated with IFN-beta-1b during hospitalization and to analyze their impact on various clinical variables and outcomes. Methods: We analyzed stored serum/plasma samples and clinical data of COVID-19 patients treated subcutaneously with IFN-beta-1b from March to May 2020, at the Infanta Leonor University Hospital in Madrid, Spain. Results: The cohort comprised 47 COVID-19 patients with severe pneumonia, 16 of whom (34%) had a critical progression requiring ICU admission. The median age was 71 years, with 28 men (58.6%). Type I IFN-alpha- and omega-neutralizing autoantibodies were found in 5 of 47 patients with severe pneumonia or critical disease (10.6%). The autoantibodies did not neutralize IFN-beta. No demographic, comorbidity, or clinical differences were seen between individuals with or without autoantibodies. We found a significant correlation between the presence of neutralizing autoantibodies and higher C-reactive protein levels (p=5.10e -03 ) and lower lymphocyte counts (p=1.80e -02 ). Survival analysis suggested that neutralizing autoantibodies may increase the risk of death (4/5, 80% vs 12/42, 28.5%). Conclusion: Autoantibodies neutralizing type I IFN underlie severe/critical COVID-19 stages in at least 10% of cases, correlate with increased C-RP and lower lymphocyte counts, and confer a trend towards increased risk of death. Subcutaneous IFN-beta treatment of hospitalized patients did not seem to improve clinical outcome. Studies of earlier, ambulatory IFN-beta treatment are warranted.

9.
Curr Res Transl Med ; 70(2): 103333, 2022 05.
Article in English | MEDLINE | ID: covidwho-1683570

ABSTRACT

BACKGROUND: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. METHODS: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. RESULTS: We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p = 0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p = 1.3 × 10-3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. CONCLUSION: TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Frequency , HEK293 Cells , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics , Virus Internalization
10.
Nature ; 603(7902): 587-598, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655590

ABSTRACT

SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNß and/or IFNω, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/immunology , Age Distribution , Autoantibodies/immunology , COVID-19/mortality , COVID-19/pathology , Critical Illness , Dendritic Cells/immunology , Genome-Wide Association Study , Humans , Interferon Type I/genetics , Sex Distribution , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics
11.
J Clin Immunol ; 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1653615

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. OBJECTIVES: To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. METHODS: Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. RESULTS: We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. CONCLUSIONS: Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients.

12.
J Clin Immunol ; 2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1653612

ABSTRACT

Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.

13.
Curr Opin Immunol ; 74: 172-182, 2022 02.
Article in English | MEDLINE | ID: covidwho-1650997

ABSTRACT

Type I interferons (IFNs) have broad and potent antiviral activity. We review the interplay between type I IFNs and SARS-CoV-2. Human cells infected with SARS-CoV-2 in vitro produce low levels of type I IFNs, and SARS-CoV-2 proteins can inhibit various steps in type I IFN production and response. Exogenous type I IFNs inhibit viral growth in vitro. In various animal species infected in vivo, type I IFN deficiencies underlie higher viral loads and more severe disease than in control animals. The early administration of exogenous type I IFNs improves infection control. In humans, inborn errors of, and auto-antibodies against type I IFNs underlie life-threatening COVID-19 pneumonia. Overall, type I IFNs are essential for host defense against SARS-CoV-2 in individual cells and whole organisms.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Animals , Humans
14.
Current research in translational medicine ; 2022.
Article in English | EuropePMC | ID: covidwho-1615101

ABSTRACT

Background : The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. Methods : We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. Results : We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p=0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p=1.3 × 10−3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. Conclusion : TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.

15.
Open forum infectious diseases ; 8(Suppl 1):S325-S326, 2021.
Article in English | EuropePMC | ID: covidwho-1602651

ABSTRACT

Background Approximately 10-20% of patients with critical COVID-19 harbor neutralizing autoantibodies (auto-Abs) that target type I interferons (IFN), a family of cytokines that induce critical innate immune defense mechanisms upon viral infection. Studies to date indicate that these auto-Abs are mostly detected in men over age 65. Methods We screened for type I IFN serum auto-Abs in sera collected < 21 days post-symptom onset in a subset of 103 COVID-19 inpatients and 24 outpatients drawn from a large prospective cohort study of SARS-CoV-2 infected patients enrolled across U.S. Military Treatment Facilities. The mean age of this n = 127 subset of study participants was 55.2 years (SD = 15.2 years, range 7.7 – 86.2 years), and 86/127 (67.7%) were male. Results Among those hospitalized 49/103 (47.6%) had severe COVID-19 (required at least high flow oxygen), and nine subjects died. We detected neutralizing auto-Abs against IFN-α, IFN-ω, or both, in four inpatients (3.9%, 8.2% of severe cases), with no auto-Abs detected in outpatients. Three of these patients were white males over the age of 62, all with multiple comorbidities;two of whom died and the third requiring high flow oxygen therapy. The fourth patient was a 36-year-old Hispanic female with a history of obesity who required mechanical ventilation during her admission for COVID-19. Conclusion These findings support the association between type I IFN auto-antibody production and life-threatening COVID-19. With further validation, reliable high-throughput screening for type I IFN auto-Abs may inform diagnosis, pathogenesis and treatment strategies for COVID-19, particularly in older males. Our finding of type I IFN auto-Ab production in a younger female prompts further study of this autoimmune phenotype in a broader population. Disclosures David A. Lindholm, MD, American Board of Internal Medicine (Individual(s) Involved: Self): Member of Auxiliary R&D Infectious Disease Item-Writer Task Force. No financial support received. No exam questions will be disclosed ., Other Financial or Material Support David Tribble, M.D., DrPH, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work)) Simon Pollett, MBBS, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work))

16.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1594167

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295731

ABSTRACT

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly, cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also cleave and inactivate the pyroptosis executioner Gasdermin (GSDM)-D. Consequently, Caspase-3 and GSDM-E promote alternative cell pyroptosis, a process exacerbated in cells exhibiting imparied type I interferon production. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to Interferon alterations identify GSDM-E/Caspase-3 as biological markers of disease severity. Overall, our findings identify NLRP1 as a key sensor of SARS-CoV-2 infection in lung epithelia.<br><br>Funding Information: This project has been funded on lab own funds from unrelated grants from the Fondation pour la Recherche Médicale (FRM) and ERC StG (INFLAME) to EM, from ERC StG (ANTIViR) to CG, by the French Ministry of Health with the participation of the Groupement Interrégional de Recherche Clinique et d’Innovation Sud-Ouest Outre-Mer (PHRCI 2020 IMMUNOMARK-COV) to G-M.B. The ASB3 structure is supported by LABEX, Investissement d’Avenir and foundation Bettencourt grants to ON. MP and RP were respectively funded by a CIFRE PhD fellowship and a research grant from Invivogen. SB is supported by a PhD fellowship from Mali ministry of education and from the FRM (FDT 12794). SALC is supported by a Vaincre La Mucoviscidose (VLM) PhD fellowship.<br><br>Declaration of Interests: Authors declare no conflict of interest. <br><br>Ethics Approval Statement: All donors had given written informed consent and the study was approved by the ethical review board “Comité de Protection des Personnes Est-III” (ID-RCB 2020-A01292-37).<br>

20.
J Clin Immunol ; 41(8): 1733-1744, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525558

ABSTRACT

BACKGROUND: It is important to predict which patients infected by SARS-CoV-2 are at higher risk of life-threatening COVID-19. Several studies suggest that neutralizing auto-antibodies (auto-Abs) against type I interferons (IFNs) are predictive of critical COVID-19 pneumonia. OBJECTIVES: We aimed to test for auto-Abs to type I IFN and describe the main characteristics of COVID-19 patients admitted to intensive care depending on whether or not these auto-Abs are present. METHODS: Retrospective analysis of all COVID-19 patients admitted to an intensive care unit (ICU) in whom samples were available, from March 2020 to March 2021, in Barcelona, Spain. RESULTS: A total of 275 (70.5%) out of 390 patients admitted to ICU were tested for type I IFNs auto-antibodies (α2 and/or ω) by ELISA, being positive in 49 (17.8%) of them. Blocking activity of plasma diluted 1/10 for high concentrations (10 ng/mL) of IFNs was proven in 26 (9.5%) patients. Almost all the patients with neutralizing auto-Abs were men (92.3%). ICU patients with positive results for neutralizing IFNs auto-Abs did not show relevant differences in demographic, comorbidities, clinical features, and mortality, when compared with those with negative results. Nevertheless, some laboratory tests (leukocytosis, neutrophilia, thrombocytosis) related with COVID-19 severity, as well as acute kidney injury (17 [65.4%] vs. 100 [40.2%]; p = 0.013) were significantly higher in patients with auto-Abs. CONCLUSION: Auto-Abs neutralizing high concentrations of type I IFNs were found in 9.5% of patients admitted to the ICU for COVID-19 pneumonia in a hospital in Barcelona. These auto-Abs should be tested early upon diagnosis of SARS-CoV-2 infection, as they account for a significant proportion of life-threatening cases.


Subject(s)
Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2 , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL