Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331576

ABSTRACT

Coronaviruses use diverse Spike (S) glycoproteins to attach to host receptors and fuse with target cells. Using a broad screening approach, we isolated from SARS-CoV-2 immune donors seven monoclonal antibodies (mAbs) that bind to all human alpha and beta coronavirus S proteins. These mAbs recognize the fusion peptide and acquire high affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha and beta coronaviruses, including Omicron BA.1 variant and bat WIV-1, and reduce viral titers and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope which is concealed by prefusion-stabilizing 2P mutations and becomes exposed upon binding of ACE2 or ACE2-mimicking mAbs. This study identifies a new class of pan-coronavirus neutralizing mAbs and reveals a receptor-induced conformational change in the S protein that exposes the fusion peptide region.

2.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article in English | MEDLINE | ID: covidwho-1568038

ABSTRACT

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Subject(s)
Autoimmune Diseases/immunology , Flow Cytometry , Infections/immunology , Neoplasms/immunology , Animals , Chronic Disease , Humans , Mice , Practice Guidelines as Topic
3.
Science ; 373(6559): 1109-1116, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1341301

ABSTRACT

The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Virus Internalization , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Convalescence , Cricetinae , Cross Reactions , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Jurkat Cells , Lung/immunology , Membrane Fusion/immunology , Neutralization Tests , Peptide Mapping , Protein Conformation, alpha-Helical , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Viral Load/immunology
4.
Science ; 372(6548): 1336-1341, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1234278

ABSTRACT

The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here, we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that the receptor-binding domain (RBD) is highly immunogenic and that 33% of RBD-reactive clones and 94% of individuals recognized a conserved immunodominant S346-S365 region comprising nested human leukocyte antigen DR (HLA-DR)- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identified cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus/immunology , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Genes, T-Cell Receptor beta , HLA-DP Antigens/immunology , HLA-DR Antigens/immunology , Humans , Immunologic Memory , Nucleocapsid Proteins/immunology , Protein Domains , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , T Follicular Helper Cells/immunology , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL