Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Crit Care Med ; 50(5): 723-732, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1706638

ABSTRACT

OBJECTIVES: Prone positioning allows to improve oxygenation and decrease mortality rate in COVID-19-associated acute respiratory distress syndrome (C-ARDS). However, the mechanisms leading to these effects are not fully understood. The aim of this study is to assess the physiologic effects of pronation by the means of CT scan and electrical impedance tomography (EIT). DESIGN: Experimental, physiologic study. SETTING: Patients were enrolled from October 2020 to March 2021 in an Italian dedicated COVID-19 ICU. PATIENTS: Twenty-one intubated patients with moderate or severe C-ARDS. INTERVENTIONS: First, patients were transported to the CT scan facility, and image acquisition was performed in prone, then supine position. Back to the ICU, gas exchange, respiratory mechanics, and ventilation and perfusion EIT-based analysis were provided toward the end of two 30 minutes steps (e.g., in supine, then prone position). MEASUREMENTS AND MAIN RESULTS: Prone position induced recruitment in the dorsal part of the lungs (12.5% ± 8.0%; p < 0.001 from baseline) and derecruitment in the ventral regions (-6.9% ± 5.2%; p < 0.001). These changes led to a global increase in recruitment (6.0% ± 6.7%; p < 0.001). Respiratory system compliance did not change with prone position (45 ± 15 vs 45 ± 18 mL/cm H2O in supine and prone position, respectively; p = 0.957) suggesting a decrease in atelectrauma. This hypothesis was supported by the decrease of a time-impedance curve concavity index designed as a surrogate for atelectrauma (1.41 ± 0.16 vs 1.30 ± 0.16; p = 0.001). Dead space measured by EIT was reduced in the ventral regions of the lungs, and the dead-space/shunt ratio decreased significantly (5.1 [2.3-23.4] vs 4.3 [0.7-6.8]; p = 0.035), showing an improvement in ventilation-perfusion matching. CONCLUSIONS: Several changes are associated with prone position in C-ARDS: increased lung recruitment, decreased atelectrauma, and improved ventilation-perfusion matching. These physiologic effects may be associated with more protective ventilation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Electric Impedance , Humans , Lung/diagnostic imaging , Perfusion , Positive-Pressure Respiration/methods , Prone Position , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed
2.
Crit Care ; 25(1): 423, 2021 12 13.
Article in English | MEDLINE | ID: covidwho-1571913

ABSTRACT

BACKGROUND: Autoptic pulmonary findings have been described in severe COVID-19 patients, but evidence regarding the correlation between clinical picture and lung histopathologic patterns is still weak. METHODS: This was a retrospective cohort observational study conducted at the referral center for infectious diseases in northern Italy. Full lung autoptic findings and clinical data of patients who died from COVID-19 were analyzed. Lung histopathologic patterns were scored according to the extent of tissue damage. To consider coexisting histopathologic patterns, hierarchical clustering of histopathologic findings was applied. RESULTS: Whole pulmonary examination was available in 75 out of 92 full autopsies. Forty-eight hospitalized patients (64%), 44 from ICU and four from the medical ward, had complete clinical data. The histopathologic patterns had a time-dependent distribution with considerable overlap among patterns. Duration of positive-pressure ventilation (p < 0.0001), mean positive end-expiratory pressure (PEEP) (p = 0.007), worst serum albumin (p = 0.017), interleukin 6 (p = 0.047), and kidney SOFA (p = 0.001) differed among histopathologic clusters. The amount of PEEP for long-lasting ventilatory treatment was associated with the cluster showing the largest areas of early and late proliferative diffuse alveolar damage. No pharmacologic interventions or comorbidities affected the lung histopathology. CONCLUSIONS: Our study draws a comprehensive link between the clinical and pulmonary histopathologic findings in a large cohort of COVID-19 patients. These results highlight that the positive end-expiratory pressures and the duration of the ventilatory treatment correlate with lung histopathologic patterns, providing new clues to the knowledge of the pathophysiology of severe SARS-CoV-2 pneumonia.


Subject(s)
COVID-19 , Lung , Autopsy , Humans , Lung/pathology , Patient Acuity , Retrospective Studies
3.
JAMA ; 323(16): 1574-1581, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453471

ABSTRACT

Importance: In December 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged in China and has spread globally, creating a pandemic. Information about the clinical characteristics of infected patients who require intensive care is limited. Objective: To characterize patients with coronavirus disease 2019 (COVID-19) requiring treatment in an intensive care unit (ICU) in the Lombardy region of Italy. Design, Setting, and Participants: Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinator center (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network and treated at one of the ICUs of the 72 hospitals in this network between February 20 and March 18, 2020. Date of final follow-up was March 25, 2020. Exposures: SARS-CoV-2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swabs. Main Outcomes and Measures: Demographic and clinical data were collected, including data on clinical management, respiratory failure, and patient mortality. Data were recorded by the coordinator center on an electronic worksheet during telephone calls by the staff of the COVID-19 Lombardy ICU Network. Results: Of the 1591 patients included in the study, the median (IQR) age was 63 (56-70) years and 1304 (82%) were male. Of the 1043 patients with available data, 709 (68%) had at least 1 comorbidity and 509 (49%) had hypertension. Among 1300 patients with available respiratory support data, 1287 (99% [95% CI, 98%-99%]) needed respiratory support, including 1150 (88% [95% CI, 87%-90%]) who received mechanical ventilation and 137 (11% [95% CI, 9%-12%]) who received noninvasive ventilation. The median positive end-expiratory pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. The median Pao2/Fio2 was 160 (IQR, 114-220). The median PEEP level was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median difference, 0 [95% CI, 0-0]; P = .94). Median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; P = .006), and median Pao2/Fio2 was higher in younger patients: 163.5 (IQR, 120-230) vs 156 (IQR, 110-205) (median difference, 7 [95% CI, -8 to 22]; P = .02). Patients with hypertension (n = 509) were older than those without hypertension (n = 526) (median [IQR] age, 66 years [60-72] vs 62 years [54-68]; P < .001) and had lower Pao2/Fio2 (median [IQR], 146 [105-214] vs 173 [120-222]; median difference, -27 [95% CI, -42 to -12]; P = .005). Among the 1581 patients with ICU disposition data available as of March 25, 2020, 920 patients (58% [95% CI, 56%-61%]) were still in the ICU, 256 (16% [95% CI, 14%-18%]) were discharged from the ICU, and 405 (26% [95% CI, 23%-28%]) had died in the ICU. Older patients (n = 786; age ≥64 years) had higher mortality than younger patients (n = 795; age ≤63 years) (36% vs 15%; difference, 21% [95% CI, 17%-26%]; P < .001). Conclusions and Relevance: In this case series of critically ill patients with laboratory-confirmed COVID-19 admitted to ICUs in Lombardy, Italy, the majority were older men, a large proportion required mechanical ventilation and high levels of PEEP, and ICU mortality was 26%.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/epidemiology , Positive-Pressure Respiration/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness/therapy , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Sex Distribution , Young Adult
4.
Pharmacol Res ; 158: 104931, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318940

ABSTRACT

Italy was the first European country hit by the COVID-19 pandemic and has the highest number of recorded COVID-19 deaths in Europe. This prospective cohort study of the correlates of the risk of death in COVID-19 patients was conducted at the Infectious Diseases and Intensive Care units of Luigi Sacco Hospital, Milan, Italy. The clinical characteristics of all the COVID-19 patients hospitalised in the early days of the epidemic (21 February -19 March 2020) were recorded upon admission, and the time-dependent probability of death was evaluated using the Kaplan-Meier method (censored as of 20 April 2020). Cox proportional hazard models were used to assess the factors independently associated with the risk of death. Forty-eight (20.6 %) of the 233 patients followed up for a median of 40 days (interquartile range 33-47) died during the follow-up. Most were males (69.1 %) and their median age was 61 years (IQR 50-72). The time-dependent probability of death was 19.7 % (95 % CI 14.6-24.9 %) 30 days after hospital admission. Age (adjusted hazard ratio [aHR] 2.08, 95 % CI 1.48-2.92 per ten years more) and obesity (aHR 3.04, 95 % CI 1.42-6.49) were independently associated with an increased risk of death, which was also associated with critical disease (aHR 8.26, 95 % CI 1.41-48.29), C-reactive protein levels (aHR 1.17, 95 % CI 1.02-1.35 per 50 mg/L more) and creatinine kinase levels above 185 U/L (aHR 2.58, 95 % CI 1.37-4.87) upon admission. Case-fatality rate of patients hospitalized with COVID-19 in the early days of the Italian epidemic was about 20 %. Our study adds evidence to the notion that older age, obesity and more advanced illness are factors associated to an increased risk of death among patients hospitalized with COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Hospitalization/statistics & numerical data , Pneumonia, Viral/mortality , Age Factors , Aged , COVID-19 , Female , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Prospective Studies , Risk Factors , SARS-CoV-2
5.
Pharmacol Res ; 158: 104899, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318934

ABSTRACT

SARS-CoV-2 is causing an increasing number of deaths worldwide because no effective treatment is currently available. Remdesivir has shown in vitro activity against coronaviruses and is a possible antiviral treatment for SARS-CoV-2 infection. This prospective (compassionate), open-label study of remdesivir, which was conducted at Luigi Sacco Hospital, Milan, Italy, between February 23 and March 20, 2020, involved patients with SARS-CoV-2 pneumonia aged ≥18 years undergoing mechanical ventilation or with an oxygen saturation level of ≤94 % in air or a National Early Warning Score 2 of ≥4. The primary outcome was the change in clinical status based on a 7-category ordinal scale (1 = not hospitalised, resuming normal daily activities; 7 = deceased). The 35 patients enrolled from February 23 to March 20, 2020, included 18 in intensive care unit (ICU), and 17 in our infectious diseases ward (IDW). The 10-day course of remdesivir was completed by 22 patients (63 %) and discontinued by 13, of whom eight (22.8 %) discontinued because of adverse events. The median follow-up was 39 days (IQR 25-44). At day 28, 14 (82.3 %) patients from IDW were discharged, two were still hospitalized and one died (5.9 %), whereas in ICU 6 (33.3 %) were discharged, 8 (44.4 %) patients died, three (16.7 %) were still mechanically ventilated and one (5.6 %) was improved but still hospitalized. Hypertransaminasemia and acute kidney injury were the most frequent severe adverse events observed (42.8 % and 22.8 % of the cases, respectively). Our data suggest that remdesivir can benefit patients with SARS-CoV-2 pneumonia hospitalised outside ICU where clinical outcome was better and adverse events are less frequently observed. Ongoing randomised controlled trials will clarify its real efficacy and safety, who to treat, and when.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Betacoronavirus , Compassionate Use Trials/statistics & numerical data , Coronavirus Infections/drug therapy , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/drug therapy , Acute Kidney Injury/chemically induced , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Aged , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/blood , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Transaminases/blood , Treatment Outcome
6.
J Nephrol ; 35(1): 99-111, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1281356

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) in Covid-19 patients admitted to the intensive care unit (ICU) is common, and its severity may be associated with unfavorable outcomes. Severe Covid-19 fulfills the diagnostic criteria for acute respiratory distress syndrome (ARDS); however, it is unclear whether there is any relationship between ventilatory management and AKI development in Covid-19 ICU patients. PURPOSE: To describe the clinical course and outcomes of Covid-19 ICU patients, focusing on ventilatory management and factors associated with AKI development. METHODS: Single-center, retrospective observational study, which assessed AKI incidence in Covid-19 ICU patients divided by positive end expiratory pressure (PEEP) tertiles, with median levels of 9.6 (low), 12.0 (medium), and 14.7 cmH2O (high-PEEP). RESULTS: Overall mortality was 51.5%. AKI (KDIGO stage 2 or 3) occurred in 38% of 101 patients. Among the AKI patients, 19 (53%) required continuous renal replacement therapy (CRRT). In AKI patients, mortality was significantly higher versus non-AKI (81% vs. 33%, p < 0.0001). The incidence of AKI in low-, medium-, or high-PEEP patients were 16%, 38%, and 59%, respectively (p = 0.002). In a multivariate analysis, high-PEEP patients showed a higher risk of developing AKI than low-PEEP patients (OR = 4.96 [1.1-21.9] 95% CI p < 0.05). ICU mortality rate was higher in high-PEEP patients, compared to medium-PEEP or low-PEEP patients (69% vs. 44% and 42%, respectively; p = 0.057). CONCLUSION: The use of high PEEP in Covid-19 ICU patients is associated with a fivefold higher risk of AKI, leading to higher mortality. The cause and effect relationship needs further analysis.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Humans , Intensive Care Units , Positive-Pressure Respiration/adverse effects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL