Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Front Big Data ; 6: 1149402, 2023.
Article in English | MEDLINE | ID: covidwho-20233912

ABSTRACT

Urban environments continuously generate larger and larger volumes of data, whose analysis can provide descriptive and predictive models as valuable support to inspire and develop data-driven Smart City applications. To this aim, Big data analysis and machine learning algorithms can play a fundamental role to bring improvements in city policies and urban issues. This paper introduces how Big Data analysis can be exploited to design and develop data-driven smart city services, and provides an overview on the most important Smart City applications, grouped in several categories. Then, it presents three real-case studies showing how data analysis methodologies can provide innovative solutions to deal with smart city issues. The first one is an approach for spatio-temporal crime forecasting (tested on Chicago crime data), the second one is methodology to discover mobility hotsposts and trajectory patterns from GPS data (tested on Beijing taxi traces), the third one is an approach to discover predictive epidemic patterns from mobility and infection data (tested on real COVID-19 data). The presented real-world cases prove that data analytics models can effectively support city managers in tackling smart city challenges and improving urban applications.

2.
Social Network Analysis and Mining ; 12(1), 2022.
Article in English | EuropePMC | ID: covidwho-1998522

ABSTRACT

During an epidemic, decision-makers in public health need accurate predictions of the future case numbers, in order to control the spread of new cases and allow efficient resource planning for hospital needs and capacities. In particular, considering that infectious diseases are spread through human-human transmissions, the analysis of spatio-temporal mobility data can play a fundamental role to enable epidemic forecasting. This paper presents the design and implementation of a predictive approach, based on spatial analysis and regressive models, to discover spatio-temporal predictive epidemic patterns from mobility and infection data. The experimental evaluation, performed on mobility and COVID-19 data collected in the city of Chicago, is aimed to assess the effectiveness of the approach in a real-world scenario. 

SELECTION OF CITATIONS
SEARCH DETAIL