Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Inflammopharmacology ; 30(4): 1143-1151, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1888932

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has become a major global health problem. COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and exhibits pulmonary and extrapulmonary effects, including cardiovascular involvement. There are several attempts to identify drugs that could treat COVID-19. Moreover, many patients infected with COVID-19 have underlying diseases, particularly cardiovascular diseases. These patients are more likely to develop severe illnesses and would require optimized treatment strategies. The current study gathered information from various databases, including relevant studies, reviews, trials, or meta-analyses until April 2022 to identify the impact of SARS-CoV-2 treatment on the cardiovascular system. Studies have shown that the prognosis of patients with underlying cardiovascular disease is worsened by COVID-19, with some COVID-19 medications interfering with the cardiovascular system. The COVID-19 treatment strategy should consider many factors and parameters to avoid medication-induced cardiac injury, mainly in elderly patients. Therefore, this article provides a synthesis of evidence on the impact of different COVID-19 medications on the cardiovascular system and related disease conditions.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cardiovascular System , Aged , COVID-19/drug therapy , Cardiovascular Diseases/drug therapy , Humans , Pandemics , SARS-CoV-2
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-316455

ABSTRACT

Background: . The viral load of asymptomatic SAR-COV-2 positive (ASAP) persons have been equal to that of symptomatic patients, suggesting a similar risk for endothelial dysfunction and increased coagulation in asymptomatic and symptomatic patients. To date, there are no reports of ST-elevation myocardial infarction (STEMI) outcomes in ASAP patients. We evaluated thrombus burden and thrombus viral load and their impact on microvascular bed perfusion in the infarct area (myocardial lush grade, MBG) in ASAP compared to SARS-COV-2 negative (SANE) STEMI patients. Methods: . This was an observational study of 46 ASAP, and 130 SANE patients admitted with confirmed STEMI treated with primary percutaneous coronary intervention and thrombus aspiration. The primary endpoints were thrombus dimension + thrombus viral load effects on MBG after PPCI. The secondary endpoints during hospitalization were major adverse cardiovascular events (MACEs). MACEs are defined as a composite of cardiovascular death, nonfatal acute AMI, and heart failure during hospitalization. Results: . Thrombus dimensions were significantly higher in ASAP patients as compared to SANE patients. Interestingly, 39 (84.9%) of ASAP patients also had thrombus specimens positive for SARS-COV-2. In ASAP STEMI patients (n=46), thrombus viral load was a significant determinant of thrombus dimension independently of risk factors (p<0.005). MBG and left ventricular function were significantly lower in ASAP STEMI patients (p<0.001). Multiple logistic regression analyses evidenced that thrombus SARS-CoV-2 infection and dimension were significant predictors of poorer MBG in STEMI patients. Conclusions: . In ASAP patients presenting with STEMI, there is strong evidence towards higher thrombus viral load, dimension, and poorer MBG. These data support the need to reconsider ASAP status as a risk factor that may worsen STEMI outcomes.

3.
Crit Care ; 25(1): 217, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1388810

ABSTRACT

BACKGROUND: The viral load of asymptomatic SAR-COV-2 positive (ASAP) persons has been equal to that of symptomatic patients. On the other hand, there are no reports of ST-elevation myocardial infarction (STEMI) outcomes in ASAP patients. Therefore, we evaluated thrombus burden and thrombus viral load and their impact on microvascular bed perfusion in the infarct area (myocardial blush grade, MBG) in ASAP compared to SARS-COV-2 negative (SANE) STEMI patients. METHODS: This was an observational study of 46 ASAP, and 130 SANE patients admitted with confirmed STEMI treated with primary percutaneous coronary intervention and thrombus aspiration. The primary endpoints were thrombus dimension + thrombus viral load effects on MBG after PPCI. The secondary endpoints during hospitalization were major adverse cardiovascular events (MACEs). MACEs are defined as a composite of cardiovascular death, nonfatal acute AMI, and heart failure during hospitalization. RESULTS: In the study population, ASAP vs. SANE showed a significant greater use of GP IIb/IIIa inhibitors and of heparin (p < 0.05), and a higher thrombus grade 5 and thrombus dimensions (p < 0.05). Interestingly, ASAP vs. SANE patients had lower MBG and left ventricular function (p < 0.001), and 39 (84.9%) of ASAP patients had thrombus specimens positive for SARS-COV-2. After PPCI, a MBG 2-3 was present in only 26.1% of ASAP vs. 97.7% of SANE STEMI patients (p < 0.001). Notably, death and nonfatal AMI were higher in ASAP vs. SANE patients (p < 0.05). Finally, in ASAP STEMI patients the thrombus viral load was a significant determinant of thrombus dimension independently of risk factors (p < 0.005). Thus, multiple logistic regression analyses evidenced that thrombus SARS-CoV-2 infection and dimension were significant predictors of poorer MBG in STEMI patients. Intriguingly, in ASAP patients the female vs. male had higher thrombus viral load (15.53 ± 4.5 vs. 30.25 ± 5.51 CT; p < 0.001), and thrombus dimension (4.62 ± 0.44 vs 4.00 ± 1.28 mm2; p < 0.001). ASAP vs. SANE patients had a significantly lower in-hospital survival for MACE following PPCI (p < 0.001). CONCLUSIONS: In ASAP patients presenting with STEMI, there is strong evidence towards higher thrombus viral load, dimension, and poorer MBG. These data support the need to reconsider ASAP status as a risk factor that may worsen STEMI outcomes.


Subject(s)
COVID-19/complications , Coronary Thrombosis/virology , Heart/physiopathology , Microcirculation/physiology , Myocardial Infarction/physiopathology , Aged , Analysis of Variance , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Cohort Studies , Coronary Angiography/methods , Coronary Thrombosis/epidemiology , Echocardiography/methods , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Myocardial Infarction/epidemiology
5.
Monaldi Arch Chest Dis ; 91(2)2021 May 04.
Article in English | MEDLINE | ID: covidwho-1215533

ABSTRACT

To the Editor COVID-19 (COrona VIrus Disease) patients with cardiovascular (CV) disease, multiple CV risk factors or comorbidities (i.e., arterial hypertension and diabetes) were shown to be more prone to a worse prognosis. SARS-CoV-2 is a still unknown enemy and the role of concomitant cardiovascular therapies has been controversial in the early stages, particularly with regard to Angiotensin-Converting Enzyme inhibitors...


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/prevention & control , Heart Disease Risk Factors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , Cardiovascular Diseases/complications , Cardiovascular Diseases/drug therapy , Deprescriptions , Humans , Hyperlipidemias/complications , Primary Prevention , SARS-CoV-2 , Secondary Prevention
6.
Int J Environ Res Public Health ; 18(3)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1067744

ABSTRACT

Coronaviruses (CoVs) represent a large family of RNA viruses that can infect different living species, posing a global threat to human health. CoVs can evade the immune response, replicate within the host, and cause a rapid immune compromise culminating in severe acute respiratory syndrome. In humans, the immune system functions are influenced by physical activity, nutrition, and the absence of respiratory or cardiovascular diseases. This review provides an in-depth study between the interactions of the immune system and coronaviruses in the host to defend against CoVs disease.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diet , Exercise , Immune System , Respiratory Tract Diseases , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Humans , Respiratory Tract Diseases/epidemiology
7.
Int J Environ Res Public Health ; 18(3)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1045437

ABSTRACT

Coronaviruses (CoVs) represent a large family of RNA viruses that can infect different living species, posing a global threat to human health. CoVs can evade the immune response, replicate within the host, and cause a rapid immune compromise culminating in severe acute respiratory syndrome. In humans, the immune system functions are influenced by physical activity, nutrition, and the absence of respiratory or cardiovascular diseases. This review provides an in-depth study between the interactions of the immune system and coronaviruses in the host to defend against CoVs disease.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diet , Exercise , Immune System , Respiratory Tract Diseases , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Humans , Respiratory Tract Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL