Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Med ; 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1900516

ABSTRACT

Timely evaluation of the protective effects of Coronavirus Disease 2019 (COVID-19) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern is urgently needed to inform pandemic control planning. Based on 78 vaccine efficacy or effectiveness (VE) data from 49 studies and 1,984,241 SARS-CoV-2 sequences collected from 31 regions, we analyzed the relationship between genetic distance (GD) of circulating viruses against the vaccine strain and VE against symptomatic infection. We found that the GD of the receptor-binding domain of the SARS-CoV-2 spike protein is highly predictive of vaccine protection and accounted for 86.3% (P = 0.038) of the VE change in a vaccine platform-based mixed-effects model and 87.9% (P = 0.006) in a manufacturer-based model. We applied the VE-GD model to predict protection mediated by existing vaccines against new genetic variants and validated the results by published real-world and clinical trial data, finding high concordance of predicted VE with observed VE. We estimated the VE against the Delta variant to be 82.8% (95% prediction interval: 68.7-96.0) using the mRNA vaccine platform, closely matching the reported VE of 83.0% from an observational study. Among the four sublineages of Omicron, the predicted VE varied between 11.9% and 33.3%, with the highest VE predicted against BA.1 and the lowest against BA.2, using the mRNA vaccine platform. The VE-GD framework enables predictions of vaccine protection in real time and offers a rapid evaluation method against novel variants that may inform vaccine deployment and public health responses.

2.
Microbiol Spectr ; 10(2): e0018222, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1752768

ABSTRACT

SARS-CoV-2 transcribes a set of subgenomic RNAs (sgRNAs) essential for the translation of structural and accessory proteins to sustain its life cycle. We applied RNA-seq on 375 respiratory samples from individual COVID-19 patients and revealed that the majority of the sgRNAs were canonical transcripts with N being the most abundant (36.2%), followed by S (11.6%), open reading frame 7a (ORF7a; 10.3%), M (8.4%), ORF3a (7.9%), ORF8 (6.0%), E (4.6%), ORF6 (2.5%), and ORF7b (0.3%); but ORF10 was not detected. The profile of most sgRNAs, except N, showed an independent association with viral load, time of specimen collection after onset, age of the patient, and S-614D/G variant with ORF7b and then ORF6 being the most sensitive to changes in these characteristics. Monitoring of 124 serial samples from 10 patients using sgRNA-specific real-time RT-PCR revealed a potential of adopting sgRNA as a marker of viral activity. Respiratory samples harboring a full set of canonical sgRNAs were mainly collected early within 1 to 2 weeks from onset, and most of the stool samples (90%) were negative for sgRNAs despite testing positive by diagnostic PCR targeting genomic RNA. ORF7b was the first to become undetectable and again being the most sensitive surrogate marker for a full set of canonical sgRNAs in clinical samples. The potential of using sgRNA to monitor viral activity and progression of SARS-CoV-2 infection, and hence as one of the objective indicators to triage patients for isolation and treatment should be considered. IMPORTANCE Attempts to use subgenomic RNAs (sgRNAs) of SARS-CoV-2 to identify active infection of COVID-19 have produced diverse results. In this work, we applied next-generation sequencing and RT-PCR to profile the full spectrum of SARS-CoV-2 sgRNAs in a large cohort of respiratory and stool samples collected throughout infection. Numerous known and novel discontinuous transcription events potentially encoding full-length, deleted and frameshift proteins were observed. In particular, the expression profile of canonical sgRNAs was associated with genomic RNA level and clinical characteristics. Our study found sgRNAs as potential biomarkers for monitoring infectivity and progression of SARS-CoV-2 infection, which provides an alternative target for the management and treatment of COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Open Reading Frames , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Load
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-312682

ABSTRACT

COVID-19 resurgences worldwide have posed significant challenges to the formulation of preventive interventions, especially given that the effects of physical distancing and upcoming vaccines on reducing susceptible social contacts and eventually halting transmission are still unclear. Using anonymized mobile geolocation data in China, we devised a mobility-associated social contact index to quantify the impact of both physical distancing and vaccination measures in a unified way such that the gap between intervention measures and disease transmission can be explicitly bridged. This index explained 90% of the variance in the changing reproduction number of infections across the COVID-19 outbreak in Wuhan, and was validated in six other cities of different population densities. Our simulations showed that vaccination combined with physical distancing can contain resurgences without relying on mobility reduction, whereas a gradual vaccination process alone cannot achieve this. Further, for cities with medium-population density, vaccination can shorten the duration of physical distancing by 36%-78%, whereas for cities with high-population density, infection numbers can well be controlled through moderate physical distancing. These findings provide guidance on tailoring and implementing comprehensive interventions for cities with varying population densities.

4.
J Clin Virol Plus ; 2(1): 100062, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1616571

ABSTRACT

Objectives: Little is known whether differences exist in virus shedding, immune and inflammatory response related to SARS-CoV-2 in people living with human immunodeficiency virus (PLWH). We assessed viral RNA and cytokine profiles of HIV and SARS-CoV-2 coinfection in Hong Kong. Methods: PLWH hospitalized with SARS-CoV-2 infection in Hong Kong were included, compared with age-matched and disease severity-matched SARS-CoV-2 infected controls (ratio of 1:5) from February 1st 2020 to July 31st 2020. SARS-CoV-2 infection was confirmed by public health laboratory and virus concentration was quantified by an in-house real-time reverse transcription-quantitative polymerase chain reaction. A panel of cytokines and chemokines were performed. Results: HIV patients had a similar respiratory shedding profile compared to controls. Duration of faecal shedding of patient A, B, C and D were at least 9, 10, 33, and 11 days, respectively. HIV patients had lower plasma levels of IL-10 and NT-pro-BNP. All 4 PLWH cases showed seroconversion to SARS-CoV-2 with anti-SARS-CoV-2 S antibodies detected in serum collected between day 18 and 30 after symptom onset. Conclusions: PLWH behaves similarly with HIV-negative controls in respiratory viral load, but with decrease in IL-10 and NT-proBNP. PLWH may have a lower risk of immunostimulatory effect due to lower IL-10.

5.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294372

ABSTRACT

Timely evaluation of the protective effects of COVID-19 vaccines is challenging but urgently needed to inform the pandemic control planning. Based on vaccine efficacy/effectiveness (VE) data of 11 vaccine products and 297,055 SARS-CoV-2 sequences collected in 20 regions, we analyzed the relationship between genetic mismatch of circulating viruses against the vaccine strain and VE. Variations from technology platforms are controlled by a mixed-effects model. We found that the genetic mismatch measured on the RBD is highly predictive for vaccine protection and accounted for 72.0% ( p -value < 0.01) of the VE change. The NTD and S protein also demonstrate significant but weaker per amino acid substitution association with VE ( p -values < 0.01). The model is applied to predict vaccine protection of existing vaccines against new genetic variants and is validated by independent cohort studies. The estimated VE against the delta variant is 79.3% (95% prediction interval: 67.0 – 92.1) using the mRNA platform, and an independent survey reported a close match of 83.0%;against the beta variant (B.1.351) the predicted VE is 53.8% (95% prediction interval: 39.9 – 67.4) using the viral-vector vaccines, and an observational study reported a close match of 48.0%. Genetic mismatch provides an accurate prediction for vaccine protection and offers a rapid evaluation method against novel variants to facilitate vaccine deployment and public health responses.

6.
mBio ; 12(5): e0268721, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1494975

ABSTRACT

SARS-CoV-2 is a positive-sense single-stranded RNA virus with emerging mutations, especially on the Spike glycoprotein (S protein). To delineate the genomic diversity in association with geographic dispersion of SARS-CoV-2 variant lineages, we collected 939,591 complete S protein sequences deposited in the Global Initiative on Sharing All Influenza Data (GISAID) from December 2019 to April 2021. An exponential emergence of S protein variants was observed since October 2020 when the four major variants of concern (VOCs), namely, alpha (α) (B.1.1.7), beta (ß) (B.1.351), gamma (γ) (P.1), and delta (δ) (B.1.617), started to circulate in various communities. We found that residues 452, 477, 484, and 501, the 4 key amino acids located in the hACE2 binding domain of S protein, were under positive selection. Through in silico protein structure prediction and immunoinformatics tools, we discovered D614G is the key determinant to S protein conformational change, while variations of N439K, T478I, E484K, and N501Y in S1-RBD also had an impact on S protein binding affinity to hACE2 and antigenicity. Finally, we predicted that the yet-to-be-identified hypothetical N439S, T478S, and N501K mutations could confer an even greater binding affinity to hACE2 and evade host immune surveillance more efficiently than the respective native variants. This study documented the evolution of SARS-CoV-2 S protein over the first 16 months of the pandemic and identified several key amino acid changes that are predicted to confer a substantial impact on transmission and immunological recognition. These findings convey crucial information to sequence-based surveillance programs and the design of next-generation vaccines. IMPORTANCE Our study showed the global distribution of SARS-CoV-2 S protein variants from January 2020 to the end of April 2021. We highlighted the key amino acids of S protein subjected to positive selection. Using computer-aided approaches, we predicted the impact of the amino acid variations in S protein on viral infectivity and antigenicity. We also predicted the potential amino acid mutations that could arise in favor of SARS-CoV-2 virulence. These findings are vital for vaccine designing and anti-SARS-CoV-2 drug discovery in an effort to combat COVID-19.


Subject(s)
SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Humans , Molecular Dynamics Simulation , Phylogeny , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Virulence
7.
PLoS Negl Trop Dis ; 15(2): e0009056, 2021 02.
Article in English | MEDLINE | ID: covidwho-1099914

ABSTRACT

While many studies have focused on identifying the association between meteorological factors and the activity of COVID-19, we argue that the contribution of meteorological factors to a reduction of the risk of COVID-19 was minimal when the effects of control measures were taken into account. In this study, we assessed how much variability in COVID-19 activity is attributable to city-level socio-demographic characteristics, meteorological factors, and the control measures imposed. We obtained the daily incidence of COVID-19, city-level characteristics, and meteorological data from a total of 102 cities situated in 27 provinces/municipalities outside Hubei province in China from 1 January 2020 to 8 March 2020, which largely covers almost the first wave of the epidemic. Generalized linear mixed effect models were employed to examine the variance in the incidence of COVID-19 explained by different combinations of variables. According to the results, including the control measure effects in a model substantially raised the explained variance to 45%, which increased by >40% compared to the null model that did not include any covariates. On top of that, including temperature and relative humidity in the model could only result in < 1% increase in the explained variance even though the meteorological factors showed a statistically significant association with the incidence rate of COVID-19. In conclusion, we showed that very limited variability of the COVID-19 incidence was attributable to meteorological factors. Instead, the control measures could explain a larger proportion of variance.


Subject(s)
COVID-19/epidemiology , Environment , Infection Control/methods , Meteorological Concepts , China/epidemiology , Humans , Incidence , Retrospective Studies , SARS-CoV-2/isolation & purification
8.
Nat Hum Behav ; 5(6): 695-705, 2021 06.
Article in English | MEDLINE | ID: covidwho-1091482

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has posed substantial challenges to the formulation of preventive interventions, particularly since the effects of physical distancing measures and upcoming vaccines on reducing susceptible social contacts and eventually halting transmission remain unclear. Here, using anonymized mobile geolocation data in China, we devise a mobility-associated social contact index to quantify the impact of both physical distancing and vaccination measures in a unified way. Building on this index, our epidemiological model reveals that vaccination combined with physical distancing can contain resurgences without relying on stay-at-home restrictions, whereas a gradual vaccination process alone cannot achieve this. Further, for cities with medium population density, vaccination can reduce the duration of physical distancing by 36% to 78%, whereas for cities with high population density, infection numbers can be well-controlled through moderate physical distancing. These findings improve our understanding of the joint effects of vaccination and physical distancing with respect to a city's population density and social contact patterns.


Subject(s)
COVID-19 , Civil Defense/organization & administration , Communicable Disease Control , Disease Transmission, Infectious/prevention & control , Physical Distancing , Vaccination , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , China/epidemiology , Cities/classification , Cities/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Delivery of Health Care, Integrated , Geographic Information Systems/statistics & numerical data , Humans , SARS-CoV-2 , Vaccination/methods , Vaccination/standards
9.
Cell Death Dis ; 12(1): 53, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1015001

ABSTRACT

Interleukin-38 has recently been shown to have anti-inflammatory properties in lung inflammatory diseases. However, the effects of IL-38 in viral pneumonia remains unknown. In the present study, we demonstrate that circulating IL-38 concentrations together with IL-36α increased significantly in influenza and COVID-19 patients, and the level of IL-38 and IL-36α correlated negatively and positively with disease severity and inflammation, respectively. In the co-cultured human respiratory epithelial cells with macrophages to mimic lung microenvironment in vitro, IL-38 was able to alleviate inflammatory responses by inhibiting poly(I:C)-induced overproduction of pro-inflammatory cytokines and chemokines through intracellular STAT1, STAT3, p38 MAPK, ERK1/2, MEK, and NF-κB signaling pathways. Intriguingly, transcriptomic profiling revealed that IL-38 targeted genes were associated with the host innate immune response to virus. We also found that IL-38 counteracts the biological processes induced by IL-36α in the co-culture. Furthermore, the administration of recombinant IL-38 could mitigate poly I:C-induced lung injury, with reduced early accumulation of neutrophils and macrophages in bronchoalveolar lavage fluid, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines and permeability of the alveolar-epithelial barrier. Taken together, our study indicates that IL-38 plays a crucial role in protection from exaggerated pulmonary inflammation during poly(I:C)-induced pneumonia, thereby providing the basis of a novel therapeutic target for respiratory viral infections.


Subject(s)
COVID-19/metabolism , Immunity, Innate/drug effects , Influenza, Human/metabolism , Interleukins/pharmacology , Pneumonia/prevention & control , Poly I-C/toxicity , Respiratory System/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Influenza A virus/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Interleukin-1/blood , Interleukins/blood , Male , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/pathology , Respiratory System/metabolism , Respiratory System/pathology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL